|
|
|
@ -19,7 +19,7 @@ class TestCrossEntropyOp1(OpTest):
|
|
|
|
|
dtype="float32")
|
|
|
|
|
self.inputs = {"X": X, "Label": label}
|
|
|
|
|
self.outputs = {"Y": cross_entropy}
|
|
|
|
|
self.attrs = {'soft_label': 0}
|
|
|
|
|
self.attrs = {"soft_label": 0}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
@ -34,8 +34,8 @@ class TestCrossEntropyOp2(OpTest):
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "cross_entropy"
|
|
|
|
|
batch_size = 10
|
|
|
|
|
class_num = 5
|
|
|
|
|
batch_size = 13
|
|
|
|
|
class_num = 37
|
|
|
|
|
X = np.random.uniform(0.1, 1.0,
|
|
|
|
|
[batch_size, class_num]).astype("float32")
|
|
|
|
|
label = np.random.uniform(0.1, 1.0,
|
|
|
|
@ -43,15 +43,16 @@ class TestCrossEntropyOp2(OpTest):
|
|
|
|
|
label /= label.sum(axis=1, keepdims=True)
|
|
|
|
|
cross_entropy = (-label * np.log(X)).sum(
|
|
|
|
|
axis=1, keepdims=True).astype("float32")
|
|
|
|
|
self.inputs = {'X': X, 'Label': label}
|
|
|
|
|
self.outputs = {'Y': cross_entropy}
|
|
|
|
|
self.attrs = {'soft_label': 1}
|
|
|
|
|
|
|
|
|
|
self.inputs = {"X": X, "Label": label}
|
|
|
|
|
self.outputs = {"Y": cross_entropy}
|
|
|
|
|
self.attrs = {"soft_label": 1}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['X'], 'Y')
|
|
|
|
|
self.check_grad(["X"], "Y", max_relative_error=0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCrossEntropyOp3(OpTest):
|
|
|
|
@ -61,8 +62,8 @@ class TestCrossEntropyOp3(OpTest):
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "cross_entropy"
|
|
|
|
|
batch_size = 30
|
|
|
|
|
class_num = 10
|
|
|
|
|
batch_size = 13
|
|
|
|
|
class_num = 37
|
|
|
|
|
X = np.random.uniform(0.1, 1.0,
|
|
|
|
|
[batch_size, class_num]).astype("float32")
|
|
|
|
|
label_index = np.random.randint(
|
|
|
|
@ -74,15 +75,15 @@ class TestCrossEntropyOp3(OpTest):
|
|
|
|
|
dtype="float32")
|
|
|
|
|
cross_entropy2 = (-label * np.log(X)).sum(
|
|
|
|
|
axis=1, keepdims=True).astype("float32")
|
|
|
|
|
self.inputs = {'X': X, 'Label': label}
|
|
|
|
|
self.outputs = {'Y': cross_entropy}
|
|
|
|
|
self.attrs = {'soft_label': 1}
|
|
|
|
|
self.inputs = {"X": X, "Label": label}
|
|
|
|
|
self.outputs = {"Y": cross_entropy}
|
|
|
|
|
self.attrs = {"soft_label": 1}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['X'], 'Y')
|
|
|
|
|
self.check_grad(["X"], "Y", max_relative_error=0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|