|
|
|
@ -102,6 +102,16 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
fluid.recordio_writer.convert_reader_to_recordio_file(
|
|
|
|
|
MNIST_RECORDIO_FILE, reader, feeder)
|
|
|
|
|
|
|
|
|
|
def _init_data(self, random=True):
|
|
|
|
|
np.random.seed(5)
|
|
|
|
|
if random:
|
|
|
|
|
img = np.random.random(size=[32, 784]).astype(np.float32)
|
|
|
|
|
else:
|
|
|
|
|
img = np.ones(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
return img, label
|
|
|
|
|
|
|
|
|
|
# simple_fc
|
|
|
|
|
def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
|
|
|
|
|
if use_cuda and not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
@ -109,8 +119,8 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
simple_fc_net, use_cuda=use_cuda, allow_op_delay=True)
|
|
|
|
|
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
img, label = self._init_data()
|
|
|
|
|
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
simple_fc_net,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
@ -118,6 +128,37 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_reduce=use_reduce)
|
|
|
|
|
|
|
|
|
|
def check_simple_fc_convergence_with_Reduce(self, use_cuda):
|
|
|
|
|
if use_cuda and not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
simple_fc_net, use_cuda=use_cuda, use_reduce=True)
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
simple_fc_net,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
allow_op_delay=True,
|
|
|
|
|
use_reduce=True)
|
|
|
|
|
|
|
|
|
|
img, label = self._init_data()
|
|
|
|
|
|
|
|
|
|
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
|
|
|
|
|
simple_fc_net,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_reduce=False)
|
|
|
|
|
reduce_first_loss, reduce_last_loss = self.check_network_convergence(
|
|
|
|
|
simple_fc_net,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_reduce=True)
|
|
|
|
|
|
|
|
|
|
for loss in zip(all_reduce_first_loss, reduce_first_loss):
|
|
|
|
|
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
|
|
|
|
|
for loss in zip(all_reduce_last_loss, reduce_last_loss):
|
|
|
|
|
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
|
|
|
|
|
|
|
|
|
|
def test_simple_fc(self):
|
|
|
|
|
# use_cuda
|
|
|
|
|
self.check_simple_fc_convergence(True)
|
|
|
|
@ -125,14 +166,15 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
|
|
|
|
|
def test_simple_fc_with_new_strategy(self):
|
|
|
|
|
# use_cuda, use_reduce
|
|
|
|
|
self.check_simple_fc_convergence(True, True)
|
|
|
|
|
self.check_simple_fc_convergence(False, True)
|
|
|
|
|
self.check_simple_fc_convergence_with_Reduce(True)
|
|
|
|
|
self.check_simple_fc_convergence_with_Reduce(False)
|
|
|
|
|
|
|
|
|
|
def check_simple_fc_parallel_accuracy(self, use_cuda, use_reduce=False):
|
|
|
|
|
def check_simple_fc_parallel_accuracy(self, use_cuda):
|
|
|
|
|
if use_cuda and not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
img, label = self._init_data(random=False)
|
|
|
|
|
|
|
|
|
|
single_first_loss, single_last_loss = self.check_network_convergence(
|
|
|
|
|
method=simple_fc_net,
|
|
|
|
|
seed=1000,
|
|
|
|
@ -146,8 +188,7 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_parallel_executor=True,
|
|
|
|
|
use_reduce=use_reduce)
|
|
|
|
|
use_parallel_executor=True)
|
|
|
|
|
|
|
|
|
|
for p_f in parallel_first_loss:
|
|
|
|
|
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
|
|
|
|
@ -158,32 +199,53 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
self.check_simple_fc_parallel_accuracy(True)
|
|
|
|
|
self.check_simple_fc_parallel_accuracy(False)
|
|
|
|
|
|
|
|
|
|
def test_simple_fc_parallel_accuracy_with_new_strategy(self):
|
|
|
|
|
# use_cuda, use_reduce
|
|
|
|
|
self.check_simple_fc_parallel_accuracy(True, True)
|
|
|
|
|
self.check_simple_fc_parallel_accuracy(False, True)
|
|
|
|
|
|
|
|
|
|
def check_batchnorm_fc_convergence(self, use_cuda, use_reduce=False):
|
|
|
|
|
def check_batchnorm_fc_convergence(self, use_cuda):
|
|
|
|
|
if use_cuda and not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
self.check_network_convergence(fc_with_batchnorm, use_cuda=use_cuda)
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
img, label = self._init_data()
|
|
|
|
|
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
fc_with_batchnorm,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda)
|
|
|
|
|
|
|
|
|
|
def check_batchnorm_fc_convergence_use_reduce(self, use_cuda):
|
|
|
|
|
if use_cuda and not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
fc_with_batchnorm, use_cuda=use_cuda, use_reduce=True)
|
|
|
|
|
|
|
|
|
|
img, label = self._init_data()
|
|
|
|
|
|
|
|
|
|
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
|
|
|
|
|
fc_with_batchnorm,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_reduce=use_reduce)
|
|
|
|
|
use_reduce=False)
|
|
|
|
|
reduce_first_loss, reduce_last_loss = self.check_network_convergence(
|
|
|
|
|
fc_with_batchnorm,
|
|
|
|
|
feed_dict={"image": img,
|
|
|
|
|
"label": label},
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
use_reduce=True)
|
|
|
|
|
|
|
|
|
|
for loss in zip(all_reduce_first_loss, reduce_first_loss):
|
|
|
|
|
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
|
|
|
|
|
for loss in zip(all_reduce_last_loss, reduce_last_loss):
|
|
|
|
|
self.assertAlmostEquals(loss[0], loss[1], delta=1e-4)
|
|
|
|
|
|
|
|
|
|
def test_batchnorm_fc(self):
|
|
|
|
|
self.check_batchnorm_fc_convergence(True)
|
|
|
|
|
self.check_batchnorm_fc_convergence(False)
|
|
|
|
|
|
|
|
|
|
def test_batchnorm_fc_with_new_strategy(self):
|
|
|
|
|
# use_cuda, use_reduce
|
|
|
|
|
self.check_batchnorm_fc_convergence(True, True)
|
|
|
|
|
self.check_batchnorm_fc_convergence(False, True)
|
|
|
|
|
self.check_batchnorm_fc_convergence_use_reduce(True)
|
|
|
|
|
self.check_batchnorm_fc_convergence_use_reduce(False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|