parent
198164adef
commit
a3ce6aa8ca
@ -0,0 +1,208 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <memory>
|
||||
#include "Function.h"
|
||||
#include "FunctionTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
enum TestType {
|
||||
kForwardTest = 0,
|
||||
kBackwardInputTest = 1,
|
||||
kBackwardFilterTest = 2,
|
||||
};
|
||||
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
class DepthwiseConvolutionTest {
|
||||
public:
|
||||
DepthwiseConvolutionTest(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
TestType type,
|
||||
std::string algo = "auto") {
|
||||
for (size_t batchSize : {1, 32}) {
|
||||
for (size_t inputSize : {7, 14, 54}) {
|
||||
for (size_t filterSize : {1, 3, 5}) {
|
||||
for (size_t inputChannels : {64, 128}) {
|
||||
size_t outputChannels = inputChannels;
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
if (padding >= filterSize) break;
|
||||
size_t outputSize =
|
||||
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||
VLOG(3) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputSize
|
||||
<< " inputWidth=" << inputSize
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterSize
|
||||
<< " filterWidth=" << filterSize
|
||||
<< " outputHeight=" << outputSize
|
||||
<< " outputWidth=" << outputSize << " stride=" << stride
|
||||
<< " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
size_t groups = inputChannels;
|
||||
Compare2Function<DType1, DType2> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", groups)
|
||||
.set("algo", algo));
|
||||
|
||||
TensorShape input{
|
||||
batchSize, inputChannels, inputSize, inputSize};
|
||||
TensorShape filter{inputChannels, 1, 1, filterSize, filterSize};
|
||||
TensorShape output{
|
||||
batchSize, outputChannels, outputSize, outputSize};
|
||||
|
||||
if (type == kForwardTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.run();
|
||||
} else if (type == kBackwardInputTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
|
||||
test.run();
|
||||
} else if (type == kBackwardFilterTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Mainly used to test cases where the height and width (input, filter)
|
||||
// are not equal.
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
class DepthwiseConvolutionTest2 {
|
||||
public:
|
||||
DepthwiseConvolutionTest2(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
TestType type,
|
||||
std::string algo = "auto") {
|
||||
for (size_t batchSize : {16}) {
|
||||
for (size_t inputHeight : {7, 31}) {
|
||||
for (size_t inputWidth : {10, 54}) {
|
||||
for (size_t filterHeight : {1, 5}) {
|
||||
for (size_t filterWidth : {3, 7}) {
|
||||
for (size_t inputChannels : {32}) {
|
||||
size_t outputChannels = inputChannels;
|
||||
size_t stride = 1;
|
||||
size_t padding = 0;
|
||||
size_t outputHeight =
|
||||
(inputHeight - filterHeight + 2 * padding + stride) /
|
||||
stride;
|
||||
size_t outputWidth =
|
||||
(inputWidth - filterWidth + 2 * padding + stride) / stride;
|
||||
VLOG(3) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputHeight
|
||||
<< " inputWidth=" << inputWidth
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterHeight
|
||||
<< " filterWidth=" << filterWidth
|
||||
<< " outputHeight=" << outputHeight
|
||||
<< " outputWidth=" << outputWidth
|
||||
<< " stride=" << stride << " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
size_t groups = inputChannels;
|
||||
Compare2Function<DType1, DType2> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", groups)
|
||||
.set("algo", algo));
|
||||
|
||||
TensorShape input{
|
||||
batchSize, inputChannels, inputHeight, inputWidth};
|
||||
TensorShape filter{
|
||||
inputChannels, 1, 1, filterHeight, filterWidth};
|
||||
TensorShape output{
|
||||
batchSize, outputChannels, outputHeight, outputWidth};
|
||||
|
||||
if (type == kForwardTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.run();
|
||||
} else if (type == kBackwardInputTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
|
||||
test.run();
|
||||
} else if (type == kBackwardFilterTest) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#ifndef PADDLE_ONLY_CPU
|
||||
TEST(Forward, GEMM2) {
|
||||
DepthwiseConvolutionTest<DEVICE_TYPE_GPU, DEVICE_TYPE_GPU> test(
|
||||
"DepthwiseConv-GPU", "DepthwiseConv-GPU", kForwardTest);
|
||||
DepthwiseConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
||||
"DepthwiseConv-GPU", "DepthwiseConv-GPU", kForwardTest);
|
||||
}
|
||||
|
||||
TEST(BackwardInput, GEMM) {
|
||||
DepthwiseConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
|
||||
"DepthwiseConvGradInput-GPU",
|
||||
"DepthwiseConvGradInput-GPU",
|
||||
kBackwardInputTest);
|
||||
DepthwiseConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
||||
"DepthwiseConvGradInput-GPU",
|
||||
"DepthwiseConvGradInput-GPU",
|
||||
kBackwardInputTest);
|
||||
}
|
||||
|
||||
TEST(BackwardFilter, GEMM) {
|
||||
DepthwiseConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
|
||||
"DepthwiseConvGradFilter-GPU",
|
||||
"DepthwiseConvGradFilter-GPU",
|
||||
kBackwardFilterTest);
|
||||
DepthwiseConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
|
||||
"DepthwiseConvGradFilter-GPU",
|
||||
"DepthwiseConvGradFilter-GPU",
|
||||
kBackwardFilterTest);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue