Merge pull request from wanghaox/hard_example

add mine_hard_examples operator
emailweixu-patch-1
Wang Hao 7 years ago committed by GitHub
commit a43594fa4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

File diff suppressed because it is too large Load Diff

@ -0,0 +1,100 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import sys
import math
from op_test import OpTest
class TestMineHardExamplesOp(OpTest):
def set_data(self):
self.init_test_data()
self.inputs = {
'ClsLoss': self.cls_loss,
'LocLoss': self.loc_loss,
'MatchIndices': self.match_indices,
'MatchDist': self.match_dis
}
self.attrs = {
'neg_pos_ratio': self.neg_pos_ratio,
'neg_overlap': self.neg_overlap,
'sample_size': self.sample_size,
'mining_type': self.mining_type
}
self.outputs = {
'NegIndices': (self.neg_indices, self.neg_indices_lod),
'UpdatedMatchIndices': self.updated_match_indices
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
return
def setUp(self):
self.op_type = "mine_hard_examples"
self.set_data()
def init_test_data(self):
self.neg_pos_ratio = 1.0
self.neg_overlap = 0.5
self.sample_size = 0
self.mining_type = "max_negative"
self.cls_loss = np.array([[0.1, 0.1, 0.3],
[0.3, 0.1, 0.1]]).astype('float32')
self.loc_loss = np.array([[0.1, 0.2, 0.3],
[0.3, 0.4, 0.1]]).astype('float32')
self.match_dis = np.array([[0.2, 0.4, 0.8],
[0.1, 0.9, 0.3]]).astype('float32')
self.match_indices = np.array([[0, -1, -1],
[-1, 0, -1]]).astype('int32')
self.updated_match_indices = self.match_indices
self.neg_indices_lod = [[0, 1, 2]]
self.neg_indices = np.array([[1], [0]]).astype('int32')
class TestMineHardExamplesOpHardExample(TestMineHardExamplesOp):
def init_test_data(self):
super(TestMineHardExamplesOpHardExample, self).init_test_data()
self.mining_type = "hard_example"
self.sample_size = 2
self.cls_loss = np.array([[0.5, 0.1, 0.3],
[0.3, 0.1, 0.1]]).astype('float32')
self.loc_loss = np.array([[0.2, 0.2, 0.3],
[0.3, 0.1, 0.2]]).astype('float32')
self.match_indices = np.array([[0, -1, -1],
[-1, 0, -1]]).astype('int32')
self.updated_match_indices = np.array([[0, -1, -1],
[-1, -1, -1]]).astype('int32')
self.neg_indices_lod = [[0, 1, 3]]
self.neg_indices = np.array([[2], [0], [2]]).astype('int32')
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save