Merge pull request #7679 from wanghaox/hard_example
add mine_hard_examples operatoremailweixu-patch-1
commit
a43594fa4a
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,100 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
import math
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestMineHardExamplesOp(OpTest):
|
||||
def set_data(self):
|
||||
self.init_test_data()
|
||||
self.inputs = {
|
||||
'ClsLoss': self.cls_loss,
|
||||
'LocLoss': self.loc_loss,
|
||||
'MatchIndices': self.match_indices,
|
||||
'MatchDist': self.match_dis
|
||||
}
|
||||
|
||||
self.attrs = {
|
||||
'neg_pos_ratio': self.neg_pos_ratio,
|
||||
'neg_overlap': self.neg_overlap,
|
||||
'sample_size': self.sample_size,
|
||||
'mining_type': self.mining_type
|
||||
}
|
||||
|
||||
self.outputs = {
|
||||
'NegIndices': (self.neg_indices, self.neg_indices_lod),
|
||||
'UpdatedMatchIndices': self.updated_match_indices
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
return
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "mine_hard_examples"
|
||||
self.set_data()
|
||||
|
||||
def init_test_data(self):
|
||||
self.neg_pos_ratio = 1.0
|
||||
self.neg_overlap = 0.5
|
||||
self.sample_size = 0
|
||||
self.mining_type = "max_negative"
|
||||
self.cls_loss = np.array([[0.1, 0.1, 0.3],
|
||||
[0.3, 0.1, 0.1]]).astype('float32')
|
||||
|
||||
self.loc_loss = np.array([[0.1, 0.2, 0.3],
|
||||
[0.3, 0.4, 0.1]]).astype('float32')
|
||||
|
||||
self.match_dis = np.array([[0.2, 0.4, 0.8],
|
||||
[0.1, 0.9, 0.3]]).astype('float32')
|
||||
|
||||
self.match_indices = np.array([[0, -1, -1],
|
||||
[-1, 0, -1]]).astype('int32')
|
||||
|
||||
self.updated_match_indices = self.match_indices
|
||||
|
||||
self.neg_indices_lod = [[0, 1, 2]]
|
||||
self.neg_indices = np.array([[1], [0]]).astype('int32')
|
||||
|
||||
|
||||
class TestMineHardExamplesOpHardExample(TestMineHardExamplesOp):
|
||||
def init_test_data(self):
|
||||
super(TestMineHardExamplesOpHardExample, self).init_test_data()
|
||||
self.mining_type = "hard_example"
|
||||
self.sample_size = 2
|
||||
|
||||
self.cls_loss = np.array([[0.5, 0.1, 0.3],
|
||||
[0.3, 0.1, 0.1]]).astype('float32')
|
||||
|
||||
self.loc_loss = np.array([[0.2, 0.2, 0.3],
|
||||
[0.3, 0.1, 0.2]]).astype('float32')
|
||||
|
||||
self.match_indices = np.array([[0, -1, -1],
|
||||
[-1, 0, -1]]).astype('int32')
|
||||
|
||||
self.updated_match_indices = np.array([[0, -1, -1],
|
||||
[-1, -1, -1]]).astype('int32')
|
||||
|
||||
self.neg_indices_lod = [[0, 1, 3]]
|
||||
self.neg_indices = np.array([[2], [0], [2]]).astype('int32')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue