rewrite ddim

test=develop
revert-15207-remove_op_handle_lock_and_fix_var
sneaxiy 6 years ago
parent e213050223
commit a500dfa579

@ -36,7 +36,7 @@ add_subdirectory(details)
proto_library(framework_proto SRCS framework.proto)
proto_library(async_executor_proto SRCS data_feed.proto)
cc_library(ddim SRCS ddim.cc DEPS eigen3 boost)
cc_library(ddim SRCS ddim.cc DEPS eigen3 boost enforce)
cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim)
cc_library(data_type SRCS data_type.cc DEPS framework_proto ddim device_context)

@ -15,34 +15,88 @@
#pragma once
#include <cstdint>
#include "paddle/fluid/platform/hostdevice.h"
#include "paddle/fluid/framework/unroll_array_ops.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
template <typename T, size_t N>
class Array {
static_assert(N > 0, "The size of array must be larger than 0");
public:
HOSTDEVICE Array() {}
static constexpr size_t kSize = N;
HOSTDEVICE explicit Array(const T &val) {
for (size_t i = 0; i < N; ++i) data_[i] = val;
HOSTDEVICE inline Array() = default;
template <typename... Args>
HOSTDEVICE inline explicit Array(const T &val, Args... args) {
UnrollVarArgsAssign<T, N>::Run(data_, val, args...);
}
HOSTDEVICE const T *Get() const { return data_; }
HOSTDEVICE inline void Fill(const T &val) {
UnrollFillConstant<N>::Run(data_, val);
}
HOSTDEVICE T *GetMutable() { return data_; }
HOSTDEVICE inline const T *Get() const { return data_; }
HOSTDEVICE T &operator[](size_t index) { return data_[index]; }
HOSTDEVICE inline T *GetMutable() { return data_; }
HOSTDEVICE const T &operator[](size_t index) const { return data_[index]; }
HOSTDEVICE inline T &operator[](size_t index) { return data_[index]; }
HOSTDEVICE inline const T &operator[](size_t index) const {
return data_[index];
}
HOSTDEVICE constexpr size_t size() const { return N; }
HOSTDEVICE inline bool operator==(const Array<T, N> &other) const {
return UnrollCompare<N>::Run(data_, other.data_);
}
HOSTDEVICE inline bool operator!=(const Array<T, N> &other) const {
return !(*this == other);
}
private:
T data_[N];
};
template <typename T>
class Array<T, 0> {
public:
static constexpr size_t kSize = 0;
HOSTDEVICE inline Array() = default;
HOSTDEVICE inline void Fill(const T &val) {}
HOSTDEVICE inline constexpr T *Get() const { return nullptr; }
// Add constexpr to GetMutable() cause warning in MAC
HOSTDEVICE inline T *GetMutable() { return nullptr; }
HOSTDEVICE inline T &operator[](size_t index) {
#ifndef __CUDA_ARCH__
PADDLE_THROW("Array<T, 0> has no element");
#endif
}
HOSTDEVICE inline const T &operator[](size_t index) const {
#ifndef __CUDA_ARCH__
PADDLE_THROW("Array<T, 0> has no element");
#endif
}
HOSTDEVICE constexpr size_t size() const { return 0; }
HOSTDEVICE constexpr bool operator==(const Array<T, 0> &other) const {
return true;
}
HOSTDEVICE constexpr bool operator!=(const Array<T, 0> &other) const {
return false;
}
};
} // namespace framework
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -18,8 +18,6 @@ limitations under the License. */
#include <stdexcept>
#include <vector>
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle {
namespace framework {
@ -29,51 +27,138 @@ namespace framework {
*
* The number of dimensions must be between [1, 9].
*/
struct DDim {
typedef boost::variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>,
Dim<7>, Dim<8>, Dim<9>>
DDimVar;
DDimVar var;
class DDim {
public:
constexpr static int kMaxRank = 9;
DDim() : var(Dim<1>()) {}
DDim() : rank_(1) { dim_[0] = 0; }
DDim(const int* d, int n);
DDim(const int64_t* d, int n);
template <int D>
explicit DDim(const Dim<D>& in) : var(in) {}
/*implicit*/ DDim(const Dim<D>& in) : rank_(D) { // NOLINT
UnsafeCast<D>() = in;
}
/*implicit*/ DDim(std::initializer_list<int64_t> init_list);
/*implicit*/ DDim(std::initializer_list<int64_t> init_list)
: DDim(init_list.begin(), init_list.size()) {}
template <int D>
DDim& operator=(const Dim<D>& in) {
var = in;
inline DDim& operator=(const Dim<D>& in) {
rank_ = D;
UnsafeCast<D>() = in;
return *this;
}
int64_t& operator[](int idx);
int64_t operator[](int idx) const;
inline int64_t& operator[](int idx) { return dim_[idx]; }
template <typename Visitor>
typename Visitor::result_type apply_visitor(Visitor& visitor) {
return var.apply_visitor(visitor);
inline int64_t operator[](int idx) const { return dim_[idx]; }
inline int64_t& at(int idx) {
PADDLE_ENFORCE(idx >= 0 && idx < rank_);
return dim_[idx];
}
template <typename Visitor>
typename Visitor::result_type apply_visitor(Visitor& visitor) const {
return var.apply_visitor(visitor);
inline int64_t at(int idx) const {
PADDLE_ENFORCE(idx >= 0 && idx < rank_);
return dim_[idx];
}
DDimVar getVar() { return var; }
template <typename Visitor>
typename std::result_of<Visitor(Dim<0>&)>::type apply_visitor(
Visitor&& visitor);
template <typename Visitor>
typename std::result_of<Visitor(const Dim<0>&)>::type apply_visitor(
Visitor&& visitor) const;
bool operator==(const DDim& d) const;
bool operator!=(const DDim& d) const;
DDim operator+(const DDim& d) const;
bool operator==(DDim d) const;
DDim operator*(const DDim& d) const;
bool operator!=(DDim d) const;
// Make DDim act like std::vector<int64_t>
using iterator = int64_t*;
using const_iterator = const int64_t*;
DDim operator+(DDim d) const;
int64_t* data() { return dim_.data(); }
const int64_t* data() const { return dim_.data(); }
DDim operator*(DDim d) const;
iterator begin() { return data(); }
const_iterator begin() const { return data(); }
iterator end() { return data() + rank_; }
const_iterator end() const { return data() + rank_; }
int size() const { return rank_; }
private:
template <int M>
inline Dim<M>& UnsafeCast() {
return const_cast<Dim<M>&>(const_cast<const DDim*>(this)->UnsafeCast<M>());
}
int size() const;
template <int M>
inline const Dim<M>& UnsafeCast() const {
static_assert(M >= 0 && M <= kMaxRank, "Invalid rank");
auto* p = static_cast<const void*>(&dim_);
return *reinterpret_cast<const Dim<M>*>(p);
}
friend DDim slice_ddim(const DDim& dim, int begin, int end);
friend DDim stride(const DDim& ddim);
friend DDim stride_numel(const DDim& ddim);
Dim<kMaxRank> dim_;
int rank_;
};
#define PADDLE_VISIT_DDIM(rank) \
case rank: \
return visitor(UnsafeCast<rank>())
template <typename Visitor>
typename std::result_of<Visitor(Dim<0>&)>::type DDim::apply_visitor(
Visitor&& visitor) {
switch (rank_) {
PADDLE_VISIT_DDIM(0);
PADDLE_VISIT_DDIM(1);
PADDLE_VISIT_DDIM(2);
PADDLE_VISIT_DDIM(3);
PADDLE_VISIT_DDIM(4);
PADDLE_VISIT_DDIM(5);
PADDLE_VISIT_DDIM(6);
PADDLE_VISIT_DDIM(7);
PADDLE_VISIT_DDIM(8);
PADDLE_VISIT_DDIM(9);
default:
PADDLE_THROW("Invalid rank %d", rank_);
}
}
template <typename Visitor>
typename std::result_of<Visitor(const Dim<0>&)>::type DDim::apply_visitor(
Visitor&& visitor) const {
switch (rank_) {
PADDLE_VISIT_DDIM(0);
PADDLE_VISIT_DDIM(1);
PADDLE_VISIT_DDIM(2);
PADDLE_VISIT_DDIM(3);
PADDLE_VISIT_DDIM(4);
PADDLE_VISIT_DDIM(5);
PADDLE_VISIT_DDIM(6);
PADDLE_VISIT_DDIM(7);
PADDLE_VISIT_DDIM(8);
PADDLE_VISIT_DDIM(9);
default:
PADDLE_THROW("Invalid rank %d", rank_);
}
}
#undef PADDLE_VISIT_DDIM
/**
* \brief Make a DDim from std::vector<int64_t>
*
@ -92,7 +177,7 @@ DDim make_ddim(const std::vector<int>& dims);
DDim make_ddim(std::initializer_list<int64_t> dims);
int64_t get(const DDim& dim, int idx);
void set(DDim& dim, int idx, int val);
void set(DDim& dim, int idx, int val); // NOLINT
std::vector<int64_t> vectorize(const DDim& ddim);
std::vector<int> vectorize2int(const DDim& ddim);
@ -129,12 +214,3 @@ DDim stride(const DDim& ddim);
DDim stride_numel(const DDim& ddim);
} // namespace framework
} // namespace paddle
namespace boost {
template <typename T>
T get(const paddle::framework::DDim& in) {
return boost::get<T>(in.var);
}
} // namespace boost

File diff suppressed because it is too large Load Diff

@ -62,7 +62,7 @@ static DLDataType GetDLDataTypeFromTypeIndex(const std::type_index &type) {
struct DLContextVisitor : public boost::static_visitor<::DLContext> {
inline ::DLContext operator()(const platform::CPUPlace &place) const {
DLContext ctx;
::DLContext ctx;
ctx.device_type = kDLCPU;
ctx.device_id = 0;
return ctx;
@ -70,7 +70,7 @@ struct DLContextVisitor : public boost::static_visitor<::DLContext> {
inline ::DLContext operator()(const platform::CUDAPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
::DLContext ctx;
ctx.device_type = kDLGPU;
ctx.device_id = place.device;
return ctx;
@ -81,7 +81,7 @@ struct DLContextVisitor : public boost::static_visitor<::DLContext> {
inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
::DLContext ctx;
ctx.device_type = kDLCPUPinned;
ctx.device_id = 0;
return ctx;

@ -38,7 +38,7 @@ class DLPackTensor {
// The shape in DLTensor is defined as int64_t*
// Add this member to make TVMTensor init without heap allocation
ShapeType shape_[9];
ShapeType shape_[DDim::kMaxRank];
};
} // namespace framework

@ -0,0 +1,169 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <type_traits>
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace framework {
namespace detail {
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollFillConstant {
template <typename T>
HOSTDEVICE inline static void Run(T *data, T val) {
data[kStart] = val;
UnrollFillConstant<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(data, val);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollFillConstant<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline static void Run(T *data, T val) {}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollAssign {
template <typename Tin, typename Tout>
HOSTDEVICE inline static void Run(const Tin *d1, Tout *d2) {
d2[kStart] = static_cast<Tout>(d1[kStart]);
UnrollAssign<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollAssign<kStart, kEnd, true> {
template <typename Tin, typename Tout>
HOSTDEVICE inline static void Run(const Tin *d1, Tout *d2) {}
};
template <typename T, size_t kStart, size_t kEnd, bool kStop>
struct UnrollVarArgsAssign {
template <typename... Args>
HOSTDEVICE inline static void Run(T *d, T val, Args... args) {
static_assert(sizeof...(args) + 1 == kEnd - kStart, "Wrong argument");
d[kStart] = val;
UnrollVarArgsAssign<T, kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d,
args...);
}
};
template <typename T, size_t kStart, size_t kEnd>
struct UnrollVarArgsAssign<T, kStart, kEnd, true> {
HOSTDEVICE inline static void Run(T *d) {}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollCompare {
template <typename T>
HOSTDEVICE inline static bool Run(const T *d1, const T *d2) {
return d1[kStart] == d2[kStart] &&
UnrollCompare<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollCompare<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline constexpr static bool Run(const T *d1, const T *d2) {
return true;
}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollAdd {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {
d3[kStart] = d1[kStart] + d2[kStart];
UnrollAdd<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2, d3);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollAdd<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollMul {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {
d3[kStart] = d1[kStart] * d2[kStart];
UnrollMul<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2, d3);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollMul<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline static void Run(const T *d1, const T *d2, T *d3) {}
};
template <size_t kStart, size_t kEnd, bool kStop>
struct UnrollProduct {
template <typename T>
HOSTDEVICE inline static T Run(const T *d) {
return d[kStart] *
UnrollProduct<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d);
}
template <typename T>
HOSTDEVICE inline static T Run(const T *d1, const T *d2) {
return d1[kStart] * d2[kStart] +
UnrollProduct<kStart + 1, kEnd, kStart + 1 == kEnd>::Run(d1, d2);
}
};
template <size_t kStart, size_t kEnd>
struct UnrollProduct<kStart, kEnd, true> {
template <typename T>
HOSTDEVICE inline constexpr static T Run(const T *d) {
return 1;
}
template <typename T>
HOSTDEVICE inline constexpr static T Run(const T *d1, const T *d2) {
return 0;
}
};
} // namespace detail
template <size_t N>
using UnrollFillConstant = detail::UnrollFillConstant<0, N, N == 0>;
template <size_t N>
using UnrollAssign = detail::UnrollAssign<0, N, N == 0>;
template <typename T, size_t N>
using UnrollVarArgsAssign = detail::UnrollVarArgsAssign<T, 0, N, N == 0>;
template <size_t N>
using UnrollCompare = detail::UnrollCompare<0, N, N == 0>;
template <size_t N>
using UnrollAdd = detail::UnrollAdd<0, N, N == 0>;
template <size_t N>
using UnrollMul = detail::UnrollMul<0, N, N == 0>;
template <size_t N>
using UnrollProduct = detail::UnrollProduct<0, N, N == 0>;
} // namespace framework
} // namespace paddle

@ -86,8 +86,6 @@ class UnaryLogicalOpInferShape : public framework::InferShapeBase {
OpComment comment;
PADDLE_ENFORCE(context->HasInput("X"),
"Input(X) of %s operator must not be null", comment.type);
auto dim_x = context->GetInputDim("X");
context->SetOutputDim("Out", context->GetInputDim("X"));
context->ShareLoD("X", "Out");
}

@ -68,7 +68,6 @@ void CropFunction(const framework::ExecutionContext& context) {
}
out->mutable_data<T>(out_dims, context.GetPlace());
auto x_stride = framework::stride(x->dims());
auto out_stride = framework::stride(out->dims());
auto offsets = GetOffsets(context);
int64_t offset = 0;
for (size_t i = 0; i < offsets.size(); ++i) {

@ -378,7 +378,6 @@ class CudnnLSTMGPUGradKernel : public framework::OpKernel<T> {
->GetMutable<CudnnRNNCache>();
auto input_dims = input->dims();
auto weight_dims = weight->dims();
auto init_h_dims = init_h->dims();
auto init_c_dims = init_c->dims();
in_grad->mutable_data<T>(ctx.GetPlace());

@ -27,8 +27,8 @@ struct StridedMemcpyFunctor;
template <typename T>
struct StridedMemcpyFunctor<T, 0> {
void operator()(const platform::DeviceContext& dev_ctx, const T* src,
framework::Dim<0> src_stride, framework::Dim<0> dst_dim,
framework::Dim<0> dst_stride, T* dst) const {
const int64_t* src_stride, const int64_t* dst_dim,
const int64_t* dst_stride, T* dst) const {
auto place = dev_ctx.GetPlace();
if (platform::is_cpu_place(place)) {
auto& cpu_place = boost::get<platform::CPUPlace>(place);
@ -50,18 +50,18 @@ struct StridedMemcpyFunctor<T, 0> {
template <typename T>
struct StridedMemcpyFunctor<T, 1> {
void operator()(const platform::DeviceContext& dev_ctx, const T* src,
framework::Dim<1> src_stride, framework::Dim<1> dst_dim,
framework::Dim<1> dst_stride, T* dst) const {
const int64_t* src_stride, const int64_t* dst_dim,
const int64_t* dst_stride, T* dst) const {
auto place = dev_ctx.GetPlace();
if (platform::is_cpu_place(place)) {
auto& cpu_place = boost::get<platform::CPUPlace>(place);
memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim.head);
memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim[0]);
} else {
#ifdef PADDLE_WITH_CUDA
auto& gpu_place = boost::get<platform::CUDAPlace>(place);
auto& cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext&>(dev_ctx);
memory::Copy(gpu_place, dst, gpu_place, src, sizeof(T) * dst_dim.head,
memory::Copy(gpu_place, dst, gpu_place, src, sizeof(T) * dst_dim[0],
cuda_ctx.stream());
#else
PADDLE_THROW("Paddle is not compiled with GPU");
@ -73,19 +73,19 @@ struct StridedMemcpyFunctor<T, 1> {
template <typename T, int Rank>
struct StridedMemcpyFunctor {
void operator()(const platform::DeviceContext& dev_ctx, const T* src,
framework::Dim<Rank> src_stride, framework::Dim<Rank> dst_dim,
framework::Dim<Rank> dst_stride, T* dst) const {
for (int64_t i = 0; i < dst_dim.head; ++i) {
const int64_t* src_stride, const int64_t* dst_dim,
const int64_t* dst_stride, T* dst) const {
for (int64_t i = 0; i < dst_dim[0]; ++i) {
StridedMemcpyFunctor<T, Rank - 1> func;
func(dev_ctx, src, src_stride.tail, dst_dim.tail, dst_stride.tail, dst);
src += src_stride.head;
dst += dst_stride.head;
func(dev_ctx, src, src_stride + 1, dst_dim + 1, dst_stride + 1, dst);
src += src_stride[0];
dst += dst_stride[0];
}
}
};
template <typename T>
struct StridedCopyDimVisitor : public boost::static_visitor<void> {
struct StridedCopyDimVisitor {
StridedCopyDimVisitor(const platform::DeviceContext& dev_ctx, const T* src,
const framework::DDim& src_stride,
const framework::DDim& dst_stride, T* dst)
@ -95,13 +95,11 @@ struct StridedCopyDimVisitor : public boost::static_visitor<void> {
dst_stride_(dst_stride),
dst_(dst) {}
template <typename Dim>
void operator()(Dim dst_dim) const {
Dim src_stride = boost::get<Dim>(src_stride_);
Dim dst_stride = boost::get<Dim>(dst_stride_);
constexpr int dim = Dim::dimensions;
StridedMemcpyFunctor<T, dim> functor;
functor(dev_ctx_, src_, src_stride, dst_dim, dst_stride, dst_);
template <int D>
void operator()(const framework::Dim<D>& dst_dim) const {
StridedMemcpyFunctor<T, D> functor;
functor(dev_ctx_, src_, src_stride_.data(), dst_dim.data(),
dst_stride_.data(), dst_);
}
const platform::DeviceContext& dev_ctx_;

@ -64,8 +64,6 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
"Output(BboxOutsideWeights) of RpnTargetAssignOp should not be null");
auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
auto gt_classes_dims = ctx->GetInputDim("GtClasses");
auto is_crowd_dims = ctx->GetInputDim("IsCrowd");
auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
auto im_info_dims = ctx->GetInputDim("ImInfo");

@ -53,12 +53,6 @@ class GenerateProposalsOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasInput("Variances"),
"Input(Variances) shouldn't be null.");
auto scores_dims = ctx->GetInputDim("Scores");
auto bbox_deltas_dims = ctx->GetInputDim("BboxDeltas");
auto im_info_dims = ctx->GetInputDim("ImInfo");
auto anchors_dims = ctx->GetInputDim("Anchors");
auto variances_dims = ctx->GetInputDim("Variances");
ctx->SetOutputDim("RpnRois", {-1, 4});
ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
}

@ -58,7 +58,6 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
auto anchor_dims = ctx->GetInputDim("Anchor");
auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
auto is_crowd_dims = ctx->GetInputDim("IsCrowd");
auto im_info_dims = ctx->GetInputDim("ImInfo");
PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
"The rank of Input(Anchor) must be 2.");

@ -178,7 +178,6 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");

@ -77,7 +77,6 @@ class ExpandKernel : public framework::OpKernel<T> {
auto& expand_times = context.Attr<std::vector<int>>("expand_times");
auto* out0 = context.Output<Tensor>("Out");
Eigen::DSizes<int, Rank> bcast_dims;
auto x_dims = in0->dims();
for (size_t i = 0; i < expand_times.size(); ++i) {
bcast_dims[i] = expand_times[i];
}

@ -148,7 +148,6 @@ class FCOpKernel : public framework::OpKernel<T> {
auto w = ctx.Input<Tensor>("W");
auto bias = ctx.Input<Tensor>("Bias");
auto output = ctx.Output<Tensor>("Out");
auto in_dims = input->dims();
auto w_dims = w->dims();
auto out_dims = output->dims();
int M = framework::product(out_dims) / out_dims[out_dims.size() - 1];

@ -242,15 +242,15 @@ class FusedEmbeddingFCLSTMKernel : public framework::OpKernel<T> {
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
bool use_peepholes = ctx.Attr<bool>("use_peepholes");
#define INIT_BASE_SIZES \
auto ids_dims = ids->dims(); /* T x M*/ \
auto ids_numel = ids->numel(); /* T x 1*/ \
auto wh_dims = wh->dims(); /* D x 4D*/ \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const int D3 = D * 3; \
int64_t row_number = embeddings->dims()[0]; \
int64_t row_width = embeddings->dims()[1]; \
#define INIT_BASE_SIZES \
auto ids_dims = ids->dims(); /* T x M*/ \
auto ids_numel = framework::product(ids_dims); /* T x 1*/ \
auto wh_dims = wh->dims(); /* D x 4D*/ \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const int D3 = D * 3; \
int64_t row_number = embeddings->dims()[0]; \
int64_t row_width = embeddings->dims()[1]; \
const int D4 = wh_dims[1];
#define INIT_BASE_INPUT_DATAS \

@ -88,7 +88,6 @@ class HingeLossGradOp : public framework::OperatorWithKernel {
"Input(Logits@GRAD) should not be null.");
auto pred_dims = ctx->GetInputDim("Logits");
auto lab_dims = ctx->GetInputDim("Labels");
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);

@ -92,7 +92,6 @@ class LogLossGradOp : public framework::OperatorWithKernel {
"Output(Predicted@GRAD) should not be null.");
auto pred_dims = ctx->GetInputDim("Predicted");
auto label_dims = ctx->GetInputDim("Labels");
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);

@ -37,9 +37,6 @@ void Transpose<DeviceContext, T, Rank>::operator()(
for (int i = 0; i < Rank; i++) {
permute[i] = axis[i];
}
auto in_dim = in.dims();
auto out_dim = out->dims();
auto eigen_in = framework::EigenTensor<T, Rank>::From(in);
auto eigen_out = framework::EigenTensor<T, Rank>::From(*out);
auto* dev = context.eigen_device();

@ -76,7 +76,6 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
void operator()(const DeviceContext& context, const framework::Tensor* X,
framework::Tensor* Y) {
auto in_dims = X->dims();
auto out_dims = Y->dims();
const float* in_data = X->data<float>();
float* out_data = Y->data<float>();
const int kBatchDim = 0;

@ -87,7 +87,6 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
"Input(Out@Grad) must not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));

@ -146,12 +146,6 @@ class MulGradOp : public framework::OperatorWithKernel {
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
auto x_mat_dims = framework::flatten_to_2d(
x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
auto y_mat_dims = framework::flatten_to_2d(
y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save