Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into gen_nccl_id_op
commit
a529d790b6
@ -0,0 +1,21 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update to point to the source file.
|
||||
VGG_SRC="vgg16_fluid.py"
|
||||
|
||||
export TRAINING_ROLE=PSERVER
|
||||
export TRAINERS=2
|
||||
export POD_IP=127.0.0.1
|
||||
export PADDLE_INIT_PORT=6174
|
||||
MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 &
|
||||
|
||||
# Need to wait for the ps to start first.
|
||||
sleep 10
|
||||
echo "done start ps"
|
||||
|
||||
export TRAINING_ROLE=TRAINER
|
||||
export TRAINERS=2
|
||||
export POD_IP=127.0.0.1
|
||||
export PADDLE_INIT_PORT=6174
|
||||
CUDA_VISIBLE_DEVICES=4 MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 --device=GPU --task_index=0 &
|
||||
CUDA_VISIBLE_DEVICES=5 MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 --device=GPU --task_index=1 &
|
@ -0,0 +1 @@
|
||||
*.inference.model
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,117 @@
|
||||
#!/bin/bash
|
||||
|
||||
BUILD_PATH=/paddle/fp16_build
|
||||
WHEEL_PATH=$BUILD_PATH/python/dist
|
||||
INFER_PATH=$BUILD_PATH/paddle/fluid/inference/tests/book
|
||||
DEMO_PATH=/paddle/contrib/float16
|
||||
|
||||
# Use the single most powerful CUDA GPU on your machine
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# Build the PaddlePaddle Fluid wheel package and install it.
|
||||
mkdir -p $BUILD_PATH && cd $BUILD_PATH
|
||||
cmake .. -DWITH_AVX=OFF \
|
||||
-DWITH_MKL=OFF \
|
||||
-DWITH_GPU=ON \
|
||||
-DWITH_TESTING=ON \
|
||||
-DWITH_TIMER=ON \
|
||||
-DWITH_PROFILER=ON \
|
||||
-DWITH_FLUID_ONLY=ON
|
||||
make -j `nproc`
|
||||
pip install -U "$WHEEL_PATH/$(ls $WHEEL_PATH)"
|
||||
|
||||
cd $DEMO_PATH
|
||||
# Clear previous log results
|
||||
rm -f *.log
|
||||
|
||||
# Test the float16 inference accuracy of resnet32 on cifar10 data set
|
||||
stdbuf -oL python float16_inference_demo.py \
|
||||
--data_set=cifar10 \
|
||||
--model=resnet \
|
||||
--threshold=0.6 \
|
||||
--repeat=10 \
|
||||
2>&1 | tee -a float16_inference_accuracy.log
|
||||
|
||||
# Sleep to cool down the GPU for consistent benchmarking
|
||||
sleep 2m
|
||||
|
||||
# benchmarking parameters
|
||||
REPEAT=1000
|
||||
MAXIMUM_BATCH_SIZE=512
|
||||
|
||||
for ((batch_size = 1; batch_size <= MAXIMUM_BATCH_SIZE; batch_size *= 2));
|
||||
do
|
||||
|
||||
# Test inference benchmark of vgg16 on imagenet
|
||||
stdbuf -oL python float16_inference_demo.py \
|
||||
--data_set=imagenet \
|
||||
--model=vgg \
|
||||
--threshold=0.001 \
|
||||
--repeat=1 \
|
||||
|
||||
$INFER_PATH/test_inference_image_classification_vgg \
|
||||
--data_set=imagenet \
|
||||
--dirname=$DEMO_PATH/image_classification_imagenet_vgg.inference.model \
|
||||
--fp16_dirname=$DEMO_PATH/float16_image_classification_imagenet_vgg.inference.model \
|
||||
--repeat=$REPEAT \
|
||||
--batch_size=$batch_size \
|
||||
--skip_cpu=true \
|
||||
2>&1 | tee -a imagenet_vgg16_benchmark.log
|
||||
|
||||
sleep 2m
|
||||
|
||||
# Test inference benchmark of resnet50 on imagenet
|
||||
stdbuf -oL python float16_inference_demo.py \
|
||||
--data_set=imagenet \
|
||||
--model=resnet \
|
||||
--threshold=0.001 \
|
||||
--repeat=1 \
|
||||
|
||||
$INFER_PATH/test_inference_image_classification_resnet \
|
||||
--data_set=imagenet \
|
||||
--dirname=$DEMO_PATH/image_classification_imagenet_resnet.inference.model \
|
||||
--fp16_dirname=$DEMO_PATH/float16_image_classification_imagenet_resnet.inference.model \
|
||||
--repeat=$REPEAT \
|
||||
--batch_size=$batch_size \
|
||||
--skip_cpu=true \
|
||||
2>&1 | tee -a imagenet_resnet50_benchmark.log
|
||||
|
||||
sleep 2m
|
||||
|
||||
# Test inference benchmark of vgg16 on cifar10
|
||||
stdbuf -oL python float16_inference_demo.py \
|
||||
--data_set=cifar10 \
|
||||
--model=vgg \
|
||||
--threshold=0.001 \
|
||||
--repeat=1 \
|
||||
|
||||
$INFER_PATH/test_inference_image_classification_vgg \
|
||||
--data_set=cifar10 \
|
||||
--dirname=$DEMO_PATH/image_classification_cifar10_vgg.inference.model \
|
||||
--fp16_dirname=$DEMO_PATH/float16_image_classification_cifar10_vgg.inference.model \
|
||||
--repeat=$REPEAT \
|
||||
--batch_size=$batch_size \
|
||||
--skip_cpu=true \
|
||||
2>&1 | tee -a cifar10_vgg16_benchmark.log
|
||||
|
||||
sleep 1m
|
||||
|
||||
# Test inference benchmark of resnet32 on cifar10
|
||||
stdbuf -oL python float16_inference_demo.py \
|
||||
--data_set=cifar10 \
|
||||
--model=resnet \
|
||||
--threshold=0.001 \
|
||||
--repeat=1 \
|
||||
|
||||
$INFER_PATH/test_inference_image_classification_vgg \
|
||||
--data_set=cifar10 \
|
||||
--dirname=$DEMO_PATH/image_classification_cifar10_resnet.inference.model \
|
||||
--fp16_dirname=$DEMO_PATH/float16_image_classification_cifar10_resnet.inference.model \
|
||||
--repeat=$REPEAT \
|
||||
--batch_size=$batch_size \
|
||||
--skip_cpu=true \
|
||||
2>&1 | tee -a cifar10_resnet32_benchmark.log
|
||||
|
||||
sleep 1m
|
||||
|
||||
done
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue