|
|
|
|
@ -730,7 +730,7 @@ __all__ += ['erf']
|
|
|
|
|
_erf_ = generate_layer_fn('erf')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def erf(x):
|
|
|
|
|
def erf(x, name=None):
|
|
|
|
|
locals_var = locals().copy()
|
|
|
|
|
kwargs = dict()
|
|
|
|
|
for name, val in locals_var.items():
|
|
|
|
|
@ -740,10 +740,6 @@ def erf(x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
erf.__doc__ = """
|
|
|
|
|
:alias_main: paddle.erf
|
|
|
|
|
:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
|
|
|
|
|
:old_api: paddle.fluid.layers.erf
|
|
|
|
|
|
|
|
|
|
:strong:`Erf Operator`
|
|
|
|
|
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).
|
|
|
|
|
|
|
|
|
|
@ -753,57 +749,22 @@ Equation:
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
|
|
x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.
|
|
|
|
|
x (Tensor): The input tensor, it's data type should be float32, float64.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
|
|
Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.
|
|
|
|
|
Tensor: The output of Erf op, dtype: float32 or float64, the same as the input, shape: the same as the input.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
# declarative mode
|
|
|
|
|
import numpy as np
|
|
|
|
|
from paddle import fluid
|
|
|
|
|
|
|
|
|
|
x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
|
|
|
|
|
y = fluid.layers.erf(x)
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
start = fluid.default_startup_program()
|
|
|
|
|
main = fluid.default_main_program()
|
|
|
|
|
|
|
|
|
|
data = np.random.randn(2, 3).astype("float32")
|
|
|
|
|
exe.run(start)
|
|
|
|
|
|
|
|
|
|
y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
|
|
|
|
|
|
|
|
|
|
data
|
|
|
|
|
# array([[ 0.4643714 , -1.1509596 , 1.2538221 ],
|
|
|
|
|
# [ 0.34369683, 0.27478245, 1.1805398 ]], dtype=float32)
|
|
|
|
|
y_np
|
|
|
|
|
# array([[ 0.48863927, -0.8964121 , 0.9237998 ],
|
|
|
|
|
# [ 0.37307587, 0.30242872, 0.9049887 ]], dtype=float32)
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
# imperative mode
|
|
|
|
|
import numpy as np
|
|
|
|
|
from paddle import fluid
|
|
|
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
|
|
|
|
data = np.random.randn(2, 3).astype("float32")
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
with dg.guard(place) as g:
|
|
|
|
|
x = dg.to_variable(data)
|
|
|
|
|
y = fluid.layers.erf(x)
|
|
|
|
|
y_np = y.numpy()
|
|
|
|
|
data
|
|
|
|
|
# array([[ 0.4643714 , -1.1509596 , 1.2538221 ],
|
|
|
|
|
# [ 0.34369683, 0.27478245, 1.1805398 ]], dtype=float32)
|
|
|
|
|
y_np
|
|
|
|
|
# array([[ 0.48863927, -0.8964121 , 0.9237998 ],
|
|
|
|
|
# [ 0.37307587, 0.30242872, 0.9049887 ]], dtype=float32)
|
|
|
|
|
import paddle
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
|
|
|
|
|
x = paddle.to_tensor(x_data)
|
|
|
|
|
out = paddle.erf(x)
|
|
|
|
|
print(out.numpy())
|
|
|
|
|
# [-0.42839236 -0.22270259 0.11246292 0.32862676]
|
|
|
|
|
"""
|
|
|
|
|
|