|
|
|
@ -16,6 +16,8 @@
|
|
|
|
|
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
|
|
|
|
|
#include <memory>
|
|
|
|
|
#include <string>
|
|
|
|
|
#include "paddle/fluid/platform/xpu_header.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
@ -27,86 +29,120 @@ class ReduceSumXPUKernel : public framework::OpKernel<T> {
|
|
|
|
|
platform::is_xpu_place(context.GetPlace()), true,
|
|
|
|
|
platform::errors::Unavailable("This kernel only runs on XPU."));
|
|
|
|
|
bool reduce_all = context.Attr<bool>("reduce_all");
|
|
|
|
|
auto* input = context.Input<Tensor>("X");
|
|
|
|
|
auto* output = context.Output<Tensor>("Out");
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dims = context.Attr<std::vector<int>>("dim");
|
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
|
|
|
auto* y = context.Output<Tensor>("Out");
|
|
|
|
|
y->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
|
|
|
|
|
|
|
|
int out_dtype = context.Attr<int>("out_dtype");
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
out_dtype == -1, true,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"XPU only support out_dtype == -1 in reduce_sum op."));
|
|
|
|
|
|
|
|
|
|
const auto* x_data = x->data<T>();
|
|
|
|
|
auto* y_data = y->data<T>();
|
|
|
|
|
const auto& input_dim_size = x->dims().size();
|
|
|
|
|
std::vector<int> true_dims;
|
|
|
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
|
|
|
if (dims[i] < 0) {
|
|
|
|
|
true_dims.push_back(dims[i] + input_dim_size);
|
|
|
|
|
} else {
|
|
|
|
|
true_dims.push_back(dims[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<int> reduce_dims;
|
|
|
|
|
std::vector<int> xdims((input_dim_size));
|
|
|
|
|
for (int i = 0; i < input_dim_size; ++i) {
|
|
|
|
|
xdims[i] = x->dims()[i];
|
|
|
|
|
}
|
|
|
|
|
if (reduce_all) {
|
|
|
|
|
int input_len = input->numel();
|
|
|
|
|
int r = xpu::sum(dev_ctx.x_context(), input->data<T>(), output->data<T>(),
|
|
|
|
|
input_len);
|
|
|
|
|
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU kernel error!"));
|
|
|
|
|
for (int i = 0; i < input_dim_size; ++i) {
|
|
|
|
|
reduce_dims.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
int ndim = input->dims().size();
|
|
|
|
|
std::vector<int> idims;
|
|
|
|
|
for (int i = 0; i < input->dims().size(); i++) {
|
|
|
|
|
idims.push_back(input->dims()[i]);
|
|
|
|
|
std::set<int> dims_set(true_dims.begin(), true_dims.end());
|
|
|
|
|
for (auto i = 0; i < input_dim_size; i++) {
|
|
|
|
|
if (dims_set.find(i) != dims_set.end()) {
|
|
|
|
|
if (x->dims()[i] != 1) {
|
|
|
|
|
reduce_dims.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
auto dims = context.Attr<std::vector<int>>("dim");
|
|
|
|
|
int rdim = dims.size();
|
|
|
|
|
int r =
|
|
|
|
|
xpu::reduce(dev_ctx.x_context(), input->data<T>(), output->data<T>(),
|
|
|
|
|
idims.data(), ndim, dims.data(), rdim, xpu::REDUCE_SUM);
|
|
|
|
|
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU kernel error!"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (reduce_dims.size() == 0) {
|
|
|
|
|
int r = xpu::copy<T>(dev_ctx.x_context(), x_data, y_data,
|
|
|
|
|
x->numel() * sizeof(T));
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU copy in reduce_sum op return "
|
|
|
|
|
"wrong value[%d %s].",
|
|
|
|
|
r, XPUAPIErrorMsg[r]));
|
|
|
|
|
} else {
|
|
|
|
|
int r = xpu::reduce_sum<T>(dev_ctx.x_context(), x_data, y_data, xdims,
|
|
|
|
|
reduce_dims);
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU reduce_sum in reduce_sum op return"
|
|
|
|
|
" wrong value[%d %s].",
|
|
|
|
|
r, XPUAPIErrorMsg[r]));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class ReduceSumGradXPUKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto dims = context.Attr<std::vector<int>>("dim");
|
|
|
|
|
bool reduce_all = context.Attr<bool>("reduce_all");
|
|
|
|
|
auto* input0 = context.Input<Tensor>("X");
|
|
|
|
|
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
const auto* input2_d = input2->data<T>();
|
|
|
|
|
auto* output_d = output->data<T>();
|
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
|
|
|
auto* out = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
|
|
|
|
|
int in_dtype = context.Attr<int>("in_dtype");
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
in_dtype == -1, true,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"XPU only support in_dtype == -1 in reduce_sum_grad op."));
|
|
|
|
|
|
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
|
|
|
int r = 0;
|
|
|
|
|
std::vector<int> idims;
|
|
|
|
|
int reduce_dim = 0;
|
|
|
|
|
if (reduce_all) {
|
|
|
|
|
idims.push_back(input0->numel());
|
|
|
|
|
idims.push_back(1);
|
|
|
|
|
idims.push_back(1);
|
|
|
|
|
r = xpu::reduce_grad(dev_ctx.x_context(), input2_d, output_d,
|
|
|
|
|
idims.data(), idims.size(), &reduce_dim, 1,
|
|
|
|
|
xpu::REDUCE_SUM);
|
|
|
|
|
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU kernel error!"));
|
|
|
|
|
} else if (dims.size() == 1) {
|
|
|
|
|
// handle reduce by one dimension
|
|
|
|
|
int reduce_dim_index = dims[0];
|
|
|
|
|
if (reduce_dim_index < 0) {
|
|
|
|
|
reduce_dim_index += input0->dims().size();
|
|
|
|
|
}
|
|
|
|
|
auto& input_dim = input0->dims();
|
|
|
|
|
int before_dim = 1;
|
|
|
|
|
for (int i = 0; i < reduce_dim_index; ++i) {
|
|
|
|
|
before_dim *= input_dim[i];
|
|
|
|
|
x_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
|
const auto* out_data = out->data<T>();
|
|
|
|
|
auto* x_grad_data = x_grad->data<T>();
|
|
|
|
|
|
|
|
|
|
const auto& input_dim_size = x->dims().size();
|
|
|
|
|
std::vector<int> true_dims;
|
|
|
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
|
|
|
if (dims[i] < 0) {
|
|
|
|
|
true_dims.push_back(dims[i] + input_dim_size);
|
|
|
|
|
} else {
|
|
|
|
|
true_dims.push_back(dims[i]);
|
|
|
|
|
}
|
|
|
|
|
int reduce_dim = input_dim[reduce_dim_index];
|
|
|
|
|
int after_dim = 1;
|
|
|
|
|
for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
|
|
|
|
|
after_dim *= input_dim[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<int> ydims(input_dim_size);
|
|
|
|
|
std::vector<int> xdims((input_dim_size));
|
|
|
|
|
std::set<int> dims_set(true_dims.begin(), true_dims.end());
|
|
|
|
|
for (auto i = 0; i < input_dim_size; i++) {
|
|
|
|
|
xdims[i] = x->dims()[i];
|
|
|
|
|
if (dims_set.find(i) != dims_set.end() || reduce_all) {
|
|
|
|
|
ydims[i] = 1;
|
|
|
|
|
} else {
|
|
|
|
|
ydims[i] = x->dims()[i];
|
|
|
|
|
}
|
|
|
|
|
idims.push_back(before_dim);
|
|
|
|
|
idims.push_back(input_dim[reduce_dim_index]);
|
|
|
|
|
idims.push_back(after_dim);
|
|
|
|
|
reduce_dim = 1;
|
|
|
|
|
r = xpu::reduce_grad(dev_ctx.x_context(), input2_d, output_d,
|
|
|
|
|
idims.data(), idims.size(), &reduce_dim, 1,
|
|
|
|
|
xpu::REDUCE_SUM);
|
|
|
|
|
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU kernel error!"));
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_THROW(
|
|
|
|
|
platform::errors::Unimplemented("unsupport reduce sum grad"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int r = xpu::broadcast<T>(dev_ctx.x_context(), out_data, x_grad_data, ydims,
|
|
|
|
|
xdims);
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
r == xpu::Error_t::SUCCESS, true,
|
|
|
|
|
platform::errors::External("XPU broadcast in reduce_sum_grad op return"
|
|
|
|
|
" wrong value[%d %s].",
|
|
|
|
|
r, XPUAPIErrorMsg[r]));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|