[Complex] Handle complex to real after type promotion (#29855)
* try to add fwd op input dtypes * refactor base impl * return tmp_ins after dygraph prepare data * fix typo found in debug * polish comment & add complex net test * revert detail change * fix unittest failed * add complex kernel condition control * fix xpu test failed & polish comment * polish details by review commentsrevert-31562-mean
parent
1a304e6c06
commit
a6072055be
@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
|
||||
import paddle.fluid.core as core
|
||||
|
||||
|
||||
class Optimization_ex1(paddle.nn.Layer):
|
||||
def __init__(self,
|
||||
shape,
|
||||
param_attr=paddle.nn.initializer.Uniform(
|
||||
low=-5., high=5.),
|
||||
dtype='float32'):
|
||||
super(Optimization_ex1, self).__init__()
|
||||
|
||||
self.theta = self.create_parameter(
|
||||
shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
|
||||
self.A = paddle.to_tensor(
|
||||
np.random.randn(4, 4) + np.random.randn(4, 4) * 1j)
|
||||
|
||||
def forward(self):
|
||||
loss = paddle.add(self.theta, self.A)
|
||||
return loss.real()
|
||||
|
||||
|
||||
class TestComplexSimpleNet(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.devices = ['cpu']
|
||||
if core.is_compiled_with_cuda():
|
||||
self.devices.append('gpu')
|
||||
self.iter = 10
|
||||
self.learning_rate = 0.5
|
||||
self.theta_size = [4, 4]
|
||||
|
||||
def train(self, device):
|
||||
paddle.set_device(device)
|
||||
|
||||
myLayer = Optimization_ex1(self.theta_size)
|
||||
optimizer = paddle.optimizer.Adam(
|
||||
learning_rate=self.learning_rate, parameters=myLayer.parameters())
|
||||
|
||||
for itr in range(self.iter):
|
||||
loss = myLayer()
|
||||
loss.backward()
|
||||
|
||||
optimizer.step()
|
||||
optimizer.clear_grad()
|
||||
|
||||
def test_train_success(self):
|
||||
for dev in self.devices:
|
||||
self.train(dev)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue