|
|
|
@ -289,7 +289,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
|
|
|
|
|
np_t = v.numpy()
|
|
|
|
|
self.model_base[k] = np_t
|
|
|
|
|
|
|
|
|
|
fluid.save_dygraph(self.state_dict, "./test_dy")
|
|
|
|
|
paddle.imperative.save(self.state_dict, "./test_dy")
|
|
|
|
|
|
|
|
|
|
def testLoadAndSetVarBase(self):
|
|
|
|
|
seed = 90
|
|
|
|
@ -369,7 +369,8 @@ class TestDygraphPtbRnn(unittest.TestCase):
|
|
|
|
|
if isinstance(adam._learning_rate, LearningRateDecay):
|
|
|
|
|
adam._learning_rate.step_num = 0
|
|
|
|
|
|
|
|
|
|
para_state_dict, opti_state_dict = fluid.load_dygraph("./test_dy")
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load(
|
|
|
|
|
"./test_dy")
|
|
|
|
|
adam.set_dict(opti_state_dict)
|
|
|
|
|
|
|
|
|
|
opti_dict = adam.state_dict()
|
|
|
|
@ -881,18 +882,18 @@ class TestDygraphPtbRnn(unittest.TestCase):
|
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
|
emb = fluid.dygraph.Embedding([10, 10])
|
|
|
|
|
state_dict = emb.state_dict()
|
|
|
|
|
paddle.imperative.save_dygraph(state_dict,
|
|
|
|
|
os.path.join('saved_dy', 'emb_dy'))
|
|
|
|
|
paddle.imperative.save(state_dict,
|
|
|
|
|
os.path.join('saved_dy', 'emb_dy'))
|
|
|
|
|
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load_dygraph(
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load(
|
|
|
|
|
os.path.join('saved_dy', 'emb_dy'))
|
|
|
|
|
|
|
|
|
|
self.assertTrue(opti_state_dict == None)
|
|
|
|
|
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load_dygraph(
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load(
|
|
|
|
|
os.path.join('saved_dy', 'emb_dy.pdparams'))
|
|
|
|
|
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load_dygraph(
|
|
|
|
|
para_state_dict, opti_state_dict = paddle.imperative.load(
|
|
|
|
|
os.path.join('saved_dy', 'emb_dy.pdopt'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|