Merge pull request #6711 from Yancey1989/fix_k8s_404

Fix 404 in k8s single training
del_some_in_makelist
Tao Luo 8 years ago committed by GitHub
commit a87f4963ed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -493,7 +493,7 @@ spec:
spec:
containers:
- name: paddle-data
image: paddledev/paddle-tutorial:k8s_data
image: paddlepaddle/paddle-tutorial:k8s_data
imagePullPolicy: Always
volumeMounts:
- mountPath: "/efs"
@ -522,7 +522,7 @@ NAME DESIRED SUCCESSFUL AGE
paddle-data 1 1 6m
```
Data preparation is done by docker image `paddledev/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code.
Data preparation is done by docker image `paddlepaddle/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code.
#### Start Training
@ -545,7 +545,7 @@ spec:
claimName: efsvol
containers:
- name: trainer
image: paddledev/paddle-tutorial:k8s_train
image: paddlepaddle/paddle-tutorial:k8s_train
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
@ -617,7 +617,7 @@ kubectl --kubeconfig=kubeconfig log -f POD_NAME
Run `kubectl --kubeconfig=kubeconfig describe job paddle-cluster-job` to check training job status. It will complete in around 20 minutes.
The details for start `pserver` and `trainer` are hidden inside docker image `paddledev/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code.
The details for start `pserver` and `trainer` are hidden inside docker image `paddlepaddle/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code.
#### Inspect Training Output

@ -4,18 +4,19 @@
## 制作Docker镜像
在一个功能齐全的Kubernetes机群里通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话一个分布式PaddlePaddle训练任务中的每个进程都可以从Ceph读取数据。在这个例子里我们只演示一个单机作业所以可以简化对环境的要求把训练数据直接放在
PaddlePaddle的Docker image里。为此我们需要制作一个包含训练数据的PaddlePaddle镜像。
Paddle 的 [Quick Start Tutorial](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html)
里介绍了用Paddle源码中的脚本下载训练数据的过程。
`paddledev/paddle:cpu-demo-latest` 镜像里有 PaddlePaddle 源码与demo 请注意,默认的
PaddlePaddle镜像 `paddledev/paddle:cpu-latest` 是不包括源码的, PaddlePaddle的各版本镜像可以参考 [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html) 所以我们使用这个镜像来下载训练数据到Docker container中然后把这个包含了训练数据的container保存为一个新的镜像。
在一个功能齐全的Kubernetes机群里通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话一个分布式PaddlePaddle训练任务中
的每个进程都可以从Ceph读取数据。在这个例子里我们只演示一个单机作业所以可以简化对环境的要求把训练数据直接放在
PaddlePaddle的Docker Image里。为此我们需要制作一个包含训练数据的PaddlePaddle镜像。
PaddlePaddle的 `paddlepaddle/paddle:cpu-demo-latest` 镜像里有PaddlePaddle的源码与demo
请注意默认的PaddlePaddle生产环境镜像 `paddlepaddle/paddle:latest` 是不包括源码的PaddlePaddle的各版本镜像可以参考
[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html)
下面我们使用这个镜像来下载数据到Docker Container中并把这个包含了训练数据的Container保存为一个新的镜像。
### 运行容器
```
$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest
$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest
```
### 下载数据

@ -28,7 +28,7 @@ PaddlePaddle镜像需要提供`paddle pserver`与`paddle train`进程的运行
- 拷贝训练文件到容器内
- 生成`paddle pserver`与`paddle train`进程的启动参数,并且启动训练
因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能所以我们可以在这个基础上添加启动脚本制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile)。
因为官方镜像 `paddlepaddle/paddle:latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能所以我们可以在这个基础上添加启动脚本制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile)。
```bash
$ cd doc/howto/usage/k8s/src/k8s_train
@ -62,7 +62,7 @@ spec:
hostNetwork: true
containers:
- name: paddle-data
image: paddledev/paddle-tutorial:k8s_data
image: paddlepaddle/paddle-tutorial:k8s_data
imagePullPolicy: Always
volumeMounts:
- mountPath: "/mnt"

@ -4,15 +4,24 @@ In this article, we will introduce how to run PaddlePaddle training job on singl
## Build Docker Image
In distributed Kubernetes cluster, we will use Ceph or other shared storage system for storing training data so that all processes in the training job can retrieve data from Ceph. In this example, we will only demo training job on single machine. In order to simplify the requirement of the environment, we will directly put training data into PaddlePaddle's Docker Image, so we need to create a PaddlePaddle Docker image that already includes the training data.
In distributed Kubernetes cluster, we will use Ceph or other distributed
storage system for storing training related data so that all processes in
PaddlePaddle training can retrieve data from Ceph. In this example, we will
only demo training job on single machine. In order to simplify the requirement
of the environment, we will directly put training data into the PaddlePaddle Docker Image,
so we need to create a PaddlePaddle Docker image that includes the training data.
The production Docker Image `paddlepaddle/paddle:cpu-demo-latest` has the PaddlePaddle
source code and demo. (Caution: Default PaddlePaddle Docker Image `paddlepaddle/paddle:latest` doesn't include
the source code, PaddlePaddle's different versions of Docker Image can be referred here:
[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_en.html)),
so we run this Docker Image and download the training data, and then commit the whole
Container to be a new Docker Image.
PaddlePaddle's [Quick Start Tutorial](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) introduces how to download and train data by using script from PaddlePaddle's source code.
And `paddledev/paddle:cpu-demo-latest` image has the PaddlePaddle source code and demo. (Caution: Default PaddlePaddle image `paddledev/paddle:cpu-latest` doesn't include the source code, PaddlePaddle's different versions of image can be referred here: [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html)), so we run this container and download the training data, and then commit the whole container to be a new Docker image.
### Run Docker Container
```
$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest
$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest
```
### Download Training Data

@ -1,4 +1,4 @@
FROM paddledev/paddle:cpu-latest
FROM paddlepaddle/paddle:latest
MAINTAINER zjsxzong89@gmail.com

@ -1,4 +1,4 @@
FROM paddledev/paddle:cpu-latest
FROM paddlepaddle/paddle:latest
COPY start.sh /root/
COPY start_paddle.py /root/

Loading…
Cancel
Save