Merge branch 'develop' into enhance_reshape

helinwang-patch-1
caoying03 8 years ago
commit a8cdd97ef5

@ -56,7 +56,7 @@ script:
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd`
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc/v2
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc/
notifications:
email:
on_success: change

@ -144,6 +144,8 @@ include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
include(external/grpc)
include(external/snappy) # download snappy
include(external/snappystream)
include(cudnn) # set cudnn libraries, must before configure
include(cupti)

@ -1,11 +1,11 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -138,13 +138,14 @@ def main():
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_target = accuracy.metrics + accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
inference_program = fluid.io.get_inference_program(batch_acc)
# Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
@ -157,27 +158,30 @@ def main():
# test
def test(exe):
accuracy.reset(exe)
test_pass_acc = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data})
outs = exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size])
test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
return accuracy.eval(exe)
return test_pass_acc.eval()
def train_loop(exe, trainer_prog):
iters = 0
ts = time.time()
train_pass_acc = fluid.average.WeightedAverage()
for pass_id in range(args.num_passes):
# train
start_time = time.time()
num_samples = 0
accuracy.reset(exe)
train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof:
for batch_id, data in enumerate(train_reader()):
ts = time.time()
@ -187,13 +191,14 @@ def main():
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
loss, acc = exe.run(
loss, acc, b_size = exe.run(
trainer_prog,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
fetch_list=[avg_cost, batch_acc, batch_size])
iters += 1
num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
% (pass_id, iters, loss, acc,
@ -201,7 +206,7 @@ def main():
) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time
pass_train_acc = accuracy.eval(exe)
pass_train_acc = train_pass_acc.eval()
pass_test_acc = test(exe)
print(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"

@ -77,7 +77,8 @@ IF(NOT ${CBLAS_FOUND})
INSTALL_DIR ${CBLAS_INSTALL_DIR}
BUILD_IN_SOURCE 1
BUILD_COMMAND ${CMAKE_MAKE_PROGRAM} ${COMMON_ARGS} ${OPTIONAL_ARGS}
INSTALL_COMMAND ${CMAKE_MAKE_PROGRAM} install NO_SHARED=1 NO_LAPACK=1 PREFIX=<INSTALL_DIR>
INSTALL_COMMAND ${CMAKE_MAKE_PROGRAM} install NO_SHARED=1 NO_LAPACK=1 PREFIX=<INSTALL_DIR>
&& rm -r ${CBLAS_INSTALL_DIR}/lib/cmake ${CBLAS_INSTALL_DIR}/lib/pkgconfig
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
@ -100,11 +101,6 @@ IF(NOT ${CBLAS_FOUND})
\"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
)"
)
INSTALL(CODE "execute_process(
COMMAND rm -r ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}/cmake
${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}/pkgconfig
)"
)
ENDIF()
ENDIF(NOT ${CBLAS_FOUND})

@ -0,0 +1,58 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF(MOBILE_INFERENCE)
return()
ENDIF()
include (ExternalProject)
# NOTE: snappy is needed when linking with recordio
SET(SNAPPY_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy)
SET(SNAPPY_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy)
SET(SNAPPY_INCLUDE_DIR "${SNAPPY_INSTALL_DIR}/include/" CACHE PATH "snappy include directory." FORCE)
ExternalProject_Add(
extern_snappy
GIT_REPOSITORY "https://github.com/google/snappy"
GIT_TAG "1.1.7"
PREFIX ${SNAPPY_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${SNAPPY_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${SNAPPY_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
-DSNAPPY_BUILD_TESTS:BOOL=OFF
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${SNAPPY_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${SNAPPY_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
BUILD_COMMAND make -j8
INSTALL_COMMAND make install
)
add_library(snappy STATIC IMPORTED GLOBAL)
set_property(TARGET snappy PROPERTY IMPORTED_LOCATION
"${SNAPPY_INSTALL_DIR}/lib/libsnappy.a")
include_directories(${SNAPPY_INCLUDE_DIR})
add_dependencies(snappy extern_snappy)

@ -0,0 +1,58 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF(MOBILE_INFERENCE)
return()
ENDIF()
include (ExternalProject)
# NOTE: snappy is needed when linking with recordio
SET(SNAPPYSTREAM_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy_stream)
SET(SNAPPYSTREAM_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy_stream)
SET(SNAPPYSTREAM_INCLUDE_DIR "${SNAPPYSTREAM_INSTALL_DIR}/include/" CACHE PATH "snappy stream include directory." FORCE)
ExternalProject_Add(
extern_snappystream
GIT_REPOSITORY "https://github.com/hoxnox/snappystream.git"
GIT_TAG "0.2.8"
PREFIX ${SNAPPYSTREAM_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${SNAPPY_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${SNAPPY_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
-DSNAPPY_ROOT=${SNAPPY_INSTALL_DIR}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS
-DCMAKE_INSTALL_PREFIX:PATH=${SNAPPYSTREAM_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${SNAPPYSTREAM_INSTALL_DIR}/lib
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
BUILD_COMMAND make -j8
INSTALL_COMMAND make install
DEPENDS snappy
)
add_library(snappystream STATIC IMPORTED GLOBAL)
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION
"${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
include_directories(${SNAPPYSTREAM_INCLUDE_DIR})
add_dependencies(snappystream extern_snappystream)

@ -186,7 +186,9 @@ function(cc_library TARGET_NAME)
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})
else()
add_library(${TARGET_NAME} STATIC ${cc_library_SRCS})
find_fluid_modules(${TARGET_NAME})
endif()
if(cc_library_DEPS)
# Don't need link libwarpctc.so
if("${cc_library_DEPS};" MATCHES "warpctc;")
@ -263,7 +265,8 @@ function(nv_library TARGET_NAME)
if (nv_library_SHARED OR nv_library_shared) # build *.so
cuda_add_library(${TARGET_NAME} SHARED ${nv_library_SRCS})
else()
cuda_add_library(${TARGET_NAME} STATIC ${nv_library_SRCS})
cuda_add_library(${TARGET_NAME} STATIC ${nv_library_SRCS})
find_fluid_modules(${TARGET_NAME})
endif()
if (nv_library_DEPS)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS})

@ -1,9 +1,22 @@
set_property(GLOBAL PROPERTY FLUID_MODULES "")
# find all fluid modules is used for paddle fluid static library
function(find_fluid_modules TARGET_NAME)
get_filename_component(__target_path ${TARGET_NAME} ABSOLUTE)
string(FIND "${__target_path}" "fluid" pos)
if(pos GREATER 1)
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
set(fluid_modules ${fluid_modules} ${TARGET_NAME})
set_property(GLOBAL PROPERTY FLUID_MODULES "${fluid_modules}")
endif()
endfunction(find_fluid_modules)
# make package for paddle fluid shared and static library
function(copy TARGET)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DSTS DEPS)
cmake_parse_arguments(copy_lib "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(inference_lib_dist_dep ${TARGET} ${inference_lib_dist_dep} PARENT_SCOPE)
list(LENGTH copy_lib_SRCS copy_lib_SRCS_len)
list(LENGTH copy_lib_DSTS copy_lib_DSTS_len)
@ -42,13 +55,21 @@ copy(glog_lib
DSTS ${dst_dir} ${dst_dir}/lib
)
IF(NOT PROTOBUF_FOUND)
if(NOT PROTOBUF_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/protobuf")
copy(protobuf_lib
SRCS ${PROTOBUF_INCLUDE_DIR} ${PROTOBUF_LITE_LIBRARY}
SRCS ${PROTOBUF_INCLUDE_DIR} ${PROTOBUF_LIBRARY}
DSTS ${dst_dir} ${dst_dir}/lib
)
ENDIF(NOT PROTOBUF_FOUND)
endif()
if(NOT CBLAS_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
)
endif()
# paddle fluid module
set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid")
@ -66,8 +87,8 @@ copy(memory_lib
)
set(module "inference")
copy(inference_lib DEPENDS paddle_fluid_shared
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.so
copy(inference_lib DEPS paddle_fluid_shared paddle_fluid
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
DSTS ${dst_dir}/${module} ${dst_dir}/${module}
)
@ -83,6 +104,4 @@ copy(string_lib
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/tinyformat
)
add_custom_target(inference_lib_dist DEPENDS
inference_lib framework_lib memory_lib platform_lib string_lib
gflags_lib glog_lib protobuf_lib eigen3_lib)
add_custom_target(inference_lib_dist DEPENDS ${inference_lib_dist_dep})

@ -20,9 +20,8 @@ class ReaderBase {
PADDLE_ENFORCE(!shapes_.empty());
}
// Read the next batch of data. (A 'batch' can be only one instance)
// If the next batch doesn't exist, the '*out' will be an empty std::vector.
virtual void ReadNext(std::vector<LoDTensor>* out) = 0;
// Show whether the next bacth exists.
virtual bool HasNext() const = 0;
// Reinitialize the reader and read the file from the begin.
virtual void ReInit() = 0;

@ -107,7 +107,7 @@ void Compute(const framework::ExecutionContext& context) const override {
### paddle::framework::Tensor到EigenTensor的转换
如上一小节所示在具体的计算中我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在[eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h)中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。
如上一小节所示在具体的计算中我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在[eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen.h)中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。
以EigenTensor为例做一个介绍
@ -125,7 +125,7 @@ From是EigenTensor模板提供的一个接口可以实现从paddle::framework
在Eigen中不同rank的Tensor是不同类型Vector是rank为1的Tensor。需要额外注意的是EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor在这里用EigenVector来表示而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作压扁成为Eigen的一维Tensor类型仍然为EigenVector。
更多的转换方法请参考eigen_test.cc中的[单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc)。
更多的转换方法请参考eigen_test.cc中的[单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen_test.cc)。

@ -107,7 +107,7 @@ void Compute(const framework::ExecutionContext& context) const override {
### paddle::framework::Tensor到EigenTensor的转换
As shown above, in actual computation, we need to transform the input and output `Tensor`s into formats Eigen supports. We show some functions in [eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h) to implement the transformation from `paddle::framework::Tensor`to `EigenTensor/EigenMatrix/EigenVector/EigenScalar`.
As shown above, in actual computation, we need to transform the input and output `Tensor`s into formats Eigen supports. We show some functions in [eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen.h) to implement the transformation from `paddle::framework::Tensor`to `EigenTensor/EigenMatrix/EigenVector/EigenScalar`.
Using EigenTensor as an example:
@ -125,7 +125,7 @@ EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
In Eigen, tensors with different ranks are different types, with `Vector` bring a rank-1 instance. Note that `EigenVector<T>::From` uses a transformation from an 1-dimensional Paddle tensor to a 1-dimensional Eigen tensor while `EigenVector<T>::Flatten` reshapes a paddle tensor and flattens it into a 1-dimensional Eigen tensor. Both resulting tensors are still typed EigenVector.
For more transformations, see the [unit tests](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc) in the `eigen_test.cc` file.
For more transformations, see the [unit tests](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen_test.cc) in the `eigen_test.cc` file.

Before

Width:  |  Height:  |  Size: 344 KiB

After

Width:  |  Height:  |  Size: 344 KiB

Before

Width:  |  Height:  |  Size: 190 KiB

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

@ -0,0 +1,27 @@
## how to use timeline tool to do profile
1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
```python
with profiler.profiler('All', 'total', '/tmp/profile') as prof:
for pass_id in range(pass_num):
for batch_id, data in enumerate(train_reader()):
exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[],
use_program_cache=True)
...
```
1. Run `python paddle/tools/timeline.py` to process `/tmp/profile`, it will generate another
file `/tmp/timeline` by default. You can change the path by cmd parameter, please take a look at
[timeline.py](https://github.com/PaddlePaddle/Paddle/blob/develop/tools/timeline.py) for details.
1. Open chrome and visit <chrome://tracing/>, use `load` button to load the generated `timeline` file.
![chrome tracing](./tracing.jpeg)
1. The resulting timeline should be like:
![chrome timeline](./timeline.jpeg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

@ -2,17 +2,17 @@
Examples: https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid/tests/book
Core: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework
Core: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/framework
Operator: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators
Operator: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators
Memory: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory
Memory: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/memory
Platform: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform
Platform: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/platform
# Compile Time
The following **defines** the NN. The definition goes into this [protocol buffer](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto).
The following **defines** the NN. The definition goes into this [protocol buffer](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto).
```python
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
@ -29,10 +29,10 @@ sgd_optimizer.minimize(avg_cost)
- Variables: `x`, `y`, `y_predict`, `cost` and `avg_cost`. [Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/framework.py#)
- Layers: `fluid.layers.data`, `fluid.layers.fc` and `fluid.layers.mean` are layers. [Python](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid/layers)
- Every Layer has one or more operators and variables/parameters
- All the operators are defined at [`paddle/operators/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators). Other worth-looking files:
- Base class: [`paddle/framework/operator.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h)
- Operator Registration: [`paddle/framework/op_registry.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h)
- Operator Lookup: [`paddle/framework/op_info.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_info.h)
- All the operators are defined at [`paddle/fluid/operators/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators). Other worth-looking files:
- Base class: [`paddle/fluid/framework/operator.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/operator.h)
- Operator Registration: [`paddle/fluid/framework/op_registry.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/op_registry.h)
- Operator Lookup: [`paddle/fluid/framework/op_info.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/op_info.h)
- Optimizer: `fluid.optimizer.SGD`. It does the following
- Add backward operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/backward.py)]
- Add optimizer operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/optimizer.py)]
@ -55,13 +55,13 @@ exe.run(fluid.default_main_program(),
fetch_list=[avg_cost])
```
- Place: `place`. one of CPU, GPU or FPGA. [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h)
- The device handle are at [paddle/platform/device_context.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h)
- Executor: `fluid.Executor(place)`. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/executor.py), [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc)]
- Place: `place`. one of CPU, GPU or FPGA. [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/platform/place.h)
- The device handle are at [paddle/fluid/platform/device_context.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/platform/device_context.h)
- Executor: `fluid.Executor(place)`. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/executor.py), [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/executor.cc)]
- Feeds the data: `feed=feeder.feed(data)`
- Evaluates all the operators
- Fetches the result: `fetch_list=[avg_cost]`
- Other worth looking files:
- Scope: [paddle/framework/scope.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/scope.h). Where all the variables live
- Variable: [paddle/framework/variable.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h). Where all the data (most likely tensors) live
- Tensor: [paddle/framework/tensor.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h). Where we allocate memory through [`paddle/memory/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory)
- Scope: [paddle/fluid/framework/scope.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/scope.h). Where all the variables live
- Variable: [paddle/fluid/framework/variable.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/variable.h). Where all the data (most likely tensors) live
- Tensor: [paddle/fluid/framework/tensor.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/tensor.h). Where we allocate memory through [`paddle/fluid/memory/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/memory)

@ -34,15 +34,15 @@ PaddlePaddle可以使用常用的Python包管理工具
:align: center
.. csv-table:: 各个版本最新的whl包
:header: "版本说明", "cp27-cp27mu", "cp27-cp27m", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
:header: "版本说明", "cp27-cp27mu", "cp27-cp27m"
:widths: 1, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
.. _pip_dependency:

@ -37,15 +37,15 @@ If the links below shows up the login form, just click "Log in as guest" to star
:align: center
.. csv-table:: whl package of each version
:header: "version", "cp27-cp27mu", "cp27-cp27m", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
:header: "version", "cp27-cp27mu", "cp27-cp27m"
:widths: 1, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_"
.. _pip_dependency:

@ -1,8 +1,19 @@
新手入门
============
如果需要快速了解PaddlePaddle的使用可以参考以下指南。
.. toctree::
:maxdepth: 1
quickstart_cn.rst
在使用PaddlePaddle构建应用时需要了解一些基本概念。
这里以一个线性回归为例子详细介绍了PaddlePaddle的使用流程包括数据格式模型配置与训练等。
.. toctree::
:maxdepth: 1
concepts/use_concepts_cn.rst

@ -1,22 +1,80 @@
## 安装与编译C-API预测库
### 概述
使用 C-API 进行预测依赖于将 PaddlePaddle 核心代码编译成链接库,只需在编译时需配制下面这些编译选项:
必须配置选项:
- `WITH_C_API`,必须配置为`ON`。
推荐配置选项:
- `WITH_PYTHON`,推荐配置为`OFF`
- `WITH_SWIG_PY`,推荐配置为`OFF`
- `WITH_GOLANG`,推荐设置为`OFF`
可选配置选项:
- `WITH_GPU`,可配置为`ON/OFF`
- `WITH_MKL`,可配置为`ON/OFF`
对推荐配置中的选项建议按照设置,以避免链接不必要的库。其它可选编译选项按需进行设定。
## 安装、编译与链接C-API预测库
### 直接下载安装
从CI系统中下载最新的C-API开发包进行安装用户可以从下面的表格中找到需要的版本
<table>
<thead>
<tr>
<th>版本说明</th>
<th>C-API</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cpu_avx_openblas</td>
<td>暂无</td>
</tr>
<tr>
<td>cpu_noavx_openblas</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda7.5_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr></tbody></table>
### 从源码编译
用户也可以从 PaddlePaddle 核心代码编译C-API链接库只需在编译时配制下面这些编译选项
<table>
<thead>
<tr>
<th>选项</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH_C_API</td>
<td>ON</td>
</tr>
<tr>
<td>WITH_PYTHON</td>
<td>OFF推荐</td>
</tr>
<tr>
<td>WITH_SWIG_PY</td>
<td>OFF推荐</td>
</tr>
<tr>
<td>WITH_GOLANG</td>
<td>OFF推荐</td>
</tr>
<tr>
<td>WITH_GPU</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>WITH_MKL</td>
<td>ON/OFF</td>
</tr></tbody></table>
建议按照推荐值设置,以避免链接不必要的库。其它可选编译选项按需进行设定。
下面的代码片段从github拉取最新代码配制编译选项需要将PADDLE_ROOT替换为PaddlePaddle预测库的安装路径
@ -100,23 +158,19 @@ cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
目前提供三种链接方式:
1. 链接`libpaddle_capi_shared.so` 动态库
- 使用 PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_shared.so`时,需注意:
1. 如果编译时指定编译CPU版本且使用`OpenBLAS`数学库在使用C-API开发预测程序时只需要链接`libpaddle_capi_shared.so`这一个库。
1. 如果是用编译时指定CPU版本且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件在使用PaddlePaddle C-API开发预测程序时需要自己链接MKL链接库。
1. 如果编译时指定编译GPU版本CUDA相关库会在预测程序运行时动态装载需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。
- 这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**。
2. 链接静态库 `libpaddle_capi_whole.a`
- 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意:
1. 需要指定`-Wl,--whole-archive`链接选项。
1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。
1. 如果在编译 C-API 时使用OpenBLAS数学库需要显示地链接`libopenblas.a`。
1. 如果在编译 C-API 是使用MKL数学库需要显示地链接MKL的动态库。
3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a`
- 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意:
1. 这种链接方式主要用于移动端预测。
1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。
1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。
1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。
1. 链接`libpaddle_capi_shared.so` 动态库(这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**),需注意:
1. 如果编译时指定编译CPU版本且使用`OpenBLAS`数学库在使用C-API开发预测程序时只需要链接`libpaddle_capi_shared.so`这一个库。
1. 如果是用编译时指定CPU版本且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件在使用PaddlePaddle C-API开发预测程序时需要自己链接MKL链接库。
1. 如果编译时指定编译GPU版本CUDA相关库会在预测程序运行时动态装载需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。
2. 链接静态库 `libpaddle_capi_whole.a`,需注意:
1. 需要指定`-Wl,--whole-archive`链接选项。
1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。
1. 如果在编译 C-API 时使用OpenBLAS数学库需要显示地链接`libopenblas.a`。
1. 如果在编译 C-API 是使用MKL数学库需要显示地链接MKL的动态库。
3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a`,需注意:
1. 这种链接方式主要用于移动端预测。
1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。
1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。
1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。

@ -1,11 +1,37 @@
进阶使用
========
PaddlePaddle支持用户灵活地设置各种命令行参数以实现对模型训练或预测流程的控制。使用方式请参考
.. toctree::
:maxdepth: 1
cmd_parameter/index_cn.rst
PaddlePaddle支持在fabric集群、MPI集群、kubernetes集群上分布式训练任务具体环境配置和使用说明请参考
.. toctree::
:maxdepth: 1
cluster/index_cn.rst
PaddlePaddle提供了用于预测的C-API关于C-API的使用我们提供了如下指南:
.. toctree::
:maxdepth: 1
capi/index_cn.rst
PaddlePaddle支持多种灵活和高效的循环神经网络具体配置使用方式请参考
.. toctree::
:maxdepth: 1
rnn/index_cn.rst
关于如何使用内置的定时工具、nvprof 或 nvvp 来运行性能分析和调优,请参考:
.. toctree::
:maxdepth: 1
optimization/gpu_profiling_cn.rst

@ -22,7 +22,7 @@
pooling
========
pooling 的使用示例如下,详细见 :ref:`api_v2.layer_pooling` 配置API
pooling 的使用示例如下。
.. code-block:: bash
@ -47,7 +47,7 @@ pooling 的使用示例如下,详细见 :ref:`api_v2.layer_pooling` 配置API
last_seq 和 first_seq
=====================
last_seq 的使用示例如下( :ref:`api_v2.layer_first_seq` 类似),详细见 :ref:`api_v2.layer_last_seq` 配置API
last_seq 的使用示例如下first_seq 类似)。
.. code-block:: bash
@ -68,7 +68,7 @@ last_seq 的使用示例如下( :ref:`api_v2.layer_first_seq` 类似),详
expand
======
expand 的使用示例如下,详细见 :ref:`api_v2.layer_expand` 配置API
expand 的使用示例如下。
.. code-block:: bash

@ -4,7 +4,7 @@
单双层RNN API对比介绍
#####################
本文以PaddlePaddle的双层RNN单元测试为示例用多对效果完全相同的、分别使用单双层RNN作为网络配置的模型来讲解如何使用双层RNN。本文中所有的例子都只是介绍双层RNN的API接口并不是使用双层RNN解决实际的问题。如果想要了解双层RNN在具体问题中的使用请参考\ :ref:`algo_hrnn_demo`\ 。本文中示例所使用的单元测试文件是\ `test_RecurrentGradientMachine.cpp <https://github.com/reyoung/Paddle/blob/develop/paddle/gserver/tests/test_RecurrentGradientMachine.cpp>`_\ 。
本文以PaddlePaddle的双层RNN单元测试为示例用多对效果完全相同的、分别使用单双层RNN作为网络配置的模型来讲解如何使用双层RNN。本文中所有的例子都只是介绍双层RNN的API接口并不是使用双层RNN解决实际的问题。如果想要了解双层RNN在具体问题中的使用请参考\ :ref:`algo_hrnn_demo`\ 。本文中示例所使用的单元测试文件是\ `test_RecurrentGradientMachine.cpp <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/test_RecurrentGradientMachine.cpp>`_\ 。
示例1双层RNN子序列间无Memory
================================
@ -166,11 +166,6 @@
在上面代码中单层和双层序列的使用和示例2中的示例类似区别是同时处理了两个输入。而对于双层序列两个输入的子序列长度也并不相同。但是我们使用了\ :code:`targetInlink`\ 参数设置了外层\ :code:`recurrent_group`\ 的输出格式。所以外层输出的序列形状,和\ :code:`emb2`\ 的序列形状一致。
示例4beam_search的生成
========================
TBD
词汇表
======

@ -1,10 +1,34 @@
RNN模型
===========
循环神经网络RNN是对序列数据建模的重要工具。PaddlePaddle提供了灵活的接口以支持复杂循环神经网络的构建。
这里将分为以下四个部分详细介绍如何使用PaddlePaddle搭建循环神经网络。
第一部分由浅入深的展示了使用PaddlePaddle搭建循环神经网络的全貌首先以简单的循环神经网络vanilla RNN为例
说明如何封装配置循环神经网络组件然后更进一步的通过序列到序列sequence to sequence模型逐步讲解如何构建完整而复杂的循环神经网络模型。
.. toctree::
:maxdepth: 1
rnn_config_cn.rst
Recurrent Group是PaddlePaddle中实现复杂循环神经网络的关键第二部分阐述了PaddlePaddle中Recurrent Group的相关概念和原理
对Recurrent Group接口进行了详细说明。另外对双层RNN对应的输入为双层序列及Recurrent Group在其中的使用进行了介绍。
.. toctree::
:maxdepth: 1
recurrent_group_cn.md
第三部分对双层序列进行了解释说明列出了PaddlePaddle中支持双层序列作为输入的Layer并对其使用进行了逐一介绍。
.. toctree::
:maxdepth: 1
hierarchical_layer_cn.rst
第四部分以PaddlePaddle的双层RNN单元测试中的网络配置为示例辅以效果相同的单层RNN网络配置作为对比讲解了多种情况下双层RNN的使用。
.. toctree::
:maxdepth: 1
hrnn_rnn_api_compare_cn.rst

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save