|
|
|
@ -19,6 +19,7 @@ import unittest
|
|
|
|
|
import time
|
|
|
|
|
import math
|
|
|
|
|
import multiprocessing
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
@ -63,18 +64,18 @@ class BuildIrMemOptBase(unittest.TestCase):
|
|
|
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
|
|
|
|
|
|
|
|
cost = network(data, label, len(word_dict))
|
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=0.2)
|
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
|
|
|
|
|
optimizer.minimize(cost)
|
|
|
|
|
if memory_opt:
|
|
|
|
|
fluid.memory_optimize(main)
|
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
|
|
|
|
|
|
# execution
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
|
|
|
|
reader = feeder.decorate_reader(train_reader, multi_devices=True)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
fluid.default_startup_program().random_seed = 1
|
|
|
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
fluid.default_startup_program().random_seed = 100
|
|
|
|
|
fluid.default_main_program().random_seed = 100
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
train_cp = compiler.CompiledProgram(fluid.default_main_program())
|
|
|
|
@ -84,30 +85,30 @@ class BuildIrMemOptBase(unittest.TestCase):
|
|
|
|
|
begin = time.time()
|
|
|
|
|
first_loss, last_loss = None, None
|
|
|
|
|
step_id = 0
|
|
|
|
|
custom_iter = getattr(self, "iter")
|
|
|
|
|
custom_iter = getattr(self, "iter", None)
|
|
|
|
|
if not custom_iter == None:
|
|
|
|
|
iter = custom_iter
|
|
|
|
|
for data in reader():
|
|
|
|
|
ret = exe.run(train_cp, feed=data, fetch_list=fetch_list)
|
|
|
|
|
print(ret)
|
|
|
|
|
step_id += 1
|
|
|
|
|
if step_id == 0:
|
|
|
|
|
first_loss = res[0]
|
|
|
|
|
if step_id == 1:
|
|
|
|
|
first_loss = ret[0]
|
|
|
|
|
if step_id == iter:
|
|
|
|
|
last_loss = res[0]
|
|
|
|
|
last_loss = ret[0]
|
|
|
|
|
break
|
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
|
|
print("%.4f Instance per second" % (
|
|
|
|
|
(batch_size * iter) / (end - begin)))
|
|
|
|
|
|
|
|
|
|
print(first_loss, last_loss)
|
|
|
|
|
avg_last_loss_val = np.array(last_loss).mean()
|
|
|
|
|
avg_first_loss_val = np.array(first_loss).mean()
|
|
|
|
|
if math.isnan(float(avg_last_loss_val)) or math.isnan(
|
|
|
|
|
float(avg_first_loss_val)):
|
|
|
|
|
sys.exit("got NaN loss, training failed.")
|
|
|
|
|
|
|
|
|
|
print(first_loss, last_loss)
|
|
|
|
|
return first_loss, last_loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -128,7 +129,7 @@ class TestIrMemOptBase(BuildIrMemOptBase):
|
|
|
|
|
not use_python_mem_opt))
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
with fluid.scope_guard(core.Scope()):
|
|
|
|
|
if use_cuda is False and use_python_mem_opt is False:
|
|
|
|
|
if use_cuda is True and use_python_mem_opt is True:
|
|
|
|
|
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
|
|
|
|
|
self.network,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
@ -138,8 +139,7 @@ class TestIrMemOptBase(BuildIrMemOptBase):
|
|
|
|
|
self.network,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
memory_opt=use_python_mem_opt)
|
|
|
|
|
for loss in zip(baseline_first_loss,
|
|
|
|
|
cur_first_loss):
|
|
|
|
|
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
|
|
|
|
|
for loss in zip(baseline_last_loss, cur_last_loss):
|
|
|
|
|
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
|
|
|
|
|
self.assertAlmostEquals(baseline_last_loss,
|
|
|
|
|
cur_last_loss, 1e-2)
|
|
|
|
|
self.assertAlmostEquals(baseline_first_loss,
|
|
|
|
|
cur_first_loss, 1e-2)
|
|
|
|
|