Merge pull request #9385 from mozga-intel/mozga/mkldnn-fc
Implementation of MKLDNN FCfea/docker_cudnn7
commit
a98a3fdc46
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,102 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/fc_op.h"
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||
"X(Input) of Fully Connected should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Out(Output) of Fully Connected should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("W"),
|
||||
"W(Input) of Fully Connected should not be null.");
|
||||
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto w_dims = ctx->GetInputDim("W");
|
||||
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
|
||||
|
||||
PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
|
||||
"Fully Connected input should be 2-D or 4-D tensor.");
|
||||
|
||||
PADDLE_ENFORCE(w_dims.size() == 2 || w_dims.size() == 4,
|
||||
"Fully Connected input should be 2-D or 4-D tensor.");
|
||||
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
||||
ctx->ShareLoD("Input", "Out");
|
||||
}
|
||||
|
||||
framework::OpKernelType FCOp::GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const {
|
||||
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
||||
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
||||
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
||||
layout, library);
|
||||
}
|
||||
|
||||
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto w_dims = ctx->GetInputDim("W");
|
||||
|
||||
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||
}
|
||||
if (ctx->HasOutput(framework::GradVarName("W"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
|
||||
}
|
||||
}
|
||||
|
||||
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const {
|
||||
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
||||
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
||||
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
||||
layout, library);
|
||||
}
|
||||
|
||||
FCOpMaker::FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Input", "(Tensor) The input tensor of fully connected operator. ");
|
||||
AddInput("W", "(Tensor), The second input tensor of fc op.");
|
||||
AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
|
||||
AddAttr<bool>("use_mkldnn",
|
||||
"(bool, default false) Only used in mkldnn kernel")
|
||||
.SetDefault(false);
|
||||
AddAttr<bool>("bias_attr", "(bool, default false) Only used in mkldnn kernel")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Fully Connected Operator.
|
||||
|
||||
The fully connected operation calculates the output based on the input, weights and bias attribute.
|
||||
The size of each dimension of the parameters checked in the infer-shape.
|
||||
The matrix of bias is generated by the mkldnn framework, when the bias_attr is True.
|
||||
Additional parametrs are use_mkldnn and bias_attr.
|
||||
The input(X) size and output(Out) size may be diffrent.
|
||||
|
||||
The fully connected layer only supports MKLDNN version
|
||||
)DOC");
|
||||
}
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad,
|
||||
paddle::operators::FCOpGrad);
|
@ -0,0 +1,52 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class FCOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override;
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override;
|
||||
};
|
||||
|
||||
class FCOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override;
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override;
|
||||
};
|
||||
|
||||
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
FCOpMaker(OpProto* proto, OpAttrChecker* op_checker);
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,99 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def fully_connected_naive(input, weights, bias_data=None):
|
||||
in_n, in_c, in_h, in_w = input.shape
|
||||
w_h, w_c = weights.shape
|
||||
|
||||
x_data = np.reshape(input, [in_n, in_c * in_h * in_w])
|
||||
w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w)))
|
||||
result = None
|
||||
|
||||
if not bias_data:
|
||||
result = np.dot(x_data, w_data)
|
||||
else:
|
||||
result = np.dot(x_data, w_data) + bias_data
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class MatrixGenerate:
|
||||
def __init__(self, mb, ic, oc, h, w):
|
||||
self.input = np.random.random((mb, ic, h, w)).astype("float32")
|
||||
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
|
||||
|
||||
|
||||
class TestFCMKLDNNOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fc"
|
||||
self.use_mkldnn = True
|
||||
self.with_bias = True
|
||||
self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
|
||||
|
||||
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
|
||||
|
||||
self.attrs = {
|
||||
'use_mkldnn': self.use_mkldnn,
|
||||
'with_bias': self.with_bias
|
||||
}
|
||||
|
||||
self.outputs = {
|
||||
'Out': fully_connected_naive(self.matrix.input, self.matrix.weights)
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9)
|
||||
|
||||
def test_check_grad_no_weight(self):
|
||||
self.check_grad(
|
||||
['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W'))
|
||||
|
||||
|
||||
class TestFCMKLDNNOp1(TestFCMKLDNNOp):
|
||||
def init_op_type(self):
|
||||
self.matrix = MatrixGenerate(2, 15, 48, 2, 2)
|
||||
|
||||
|
||||
class TestFCMKLDNNOp2(TestFCMKLDNNOp):
|
||||
def init_op_type(self):
|
||||
self.matrix = MatrixGenerate(2, 32, 40, 1, 1)
|
||||
|
||||
|
||||
class TestFCMKLDNNOp3(TestFCMKLDNNOp):
|
||||
def init_op_type(self):
|
||||
self.matrix = MatrixGenerate(2, 2, 4, 1, 1)
|
||||
|
||||
|
||||
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
|
||||
def init_op_type(self):
|
||||
self.with_bias = False
|
||||
self.matrix = MatrixGenerate(2, 32, 48, 2, 2)
|
||||
|
||||
|
||||
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
|
||||
def init_op_type(self):
|
||||
self.with_bias = False
|
||||
self.matrix = MatrixGenerate(2, 32, 1000, 6, 6)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue