|
|
|
@ -101,31 +101,50 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
|
|
|
|
|
def check_with_place(self, place):
|
|
|
|
|
scope = core.Scope()
|
|
|
|
|
|
|
|
|
|
row_width = 12
|
|
|
|
|
# create and initialize Grad Variable
|
|
|
|
|
height = 10
|
|
|
|
|
rows = [0, 4, 7]
|
|
|
|
|
row_numel = 12
|
|
|
|
|
grad_height = 10
|
|
|
|
|
grad_rows = [0, 4, 7]
|
|
|
|
|
|
|
|
|
|
grad_selected_rows = scope.var('Grad').get_selected_rows()
|
|
|
|
|
grad_selected_rows.set_height(height)
|
|
|
|
|
grad_selected_rows.set_rows(rows)
|
|
|
|
|
np_array = np.ones((len(rows), row_numel)).astype("float32")
|
|
|
|
|
np_array[0, 0] = 2.0
|
|
|
|
|
np_array[2, 8] = 4.0
|
|
|
|
|
grad_selected_rows.set_height(grad_height)
|
|
|
|
|
grad_selected_rows.set_rows(grad_rows)
|
|
|
|
|
grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
|
|
|
|
|
grad_array[0, 0] = 2.0
|
|
|
|
|
grad_array[2, 8] = 4.0
|
|
|
|
|
|
|
|
|
|
grad_tensor = grad_selected_rows.get_tensor()
|
|
|
|
|
grad_tensor.set(np_array, place)
|
|
|
|
|
grad_tensor.set(grad_array, place)
|
|
|
|
|
|
|
|
|
|
# create and initialize Param Variable
|
|
|
|
|
param = scope.var('Param').get_tensor()
|
|
|
|
|
param_array = np.full((height, row_numel), 5.0).astype("float32")
|
|
|
|
|
param.set(param_array, place)
|
|
|
|
|
# create and initialize W Variable
|
|
|
|
|
param_rows = [0, 1, 2, 3, 4, 5, 6, 7]
|
|
|
|
|
|
|
|
|
|
# init Param
|
|
|
|
|
w_selected_rows = scope.var('Param').get_selected_rows()
|
|
|
|
|
w_selected_rows.set_height(len(param_rows))
|
|
|
|
|
w_selected_rows.set_rows(param_rows)
|
|
|
|
|
w_array = np.ones((len(param_rows), row_width)).astype("float32")
|
|
|
|
|
for i in range(len(param_rows)):
|
|
|
|
|
w_array[i] *= i
|
|
|
|
|
w_tensor = w_selected_rows.get_tensor()
|
|
|
|
|
w_tensor.set(w_array, place)
|
|
|
|
|
|
|
|
|
|
w_before_optimize = np.array(w_tensor)
|
|
|
|
|
print(w_before_optimize)
|
|
|
|
|
|
|
|
|
|
# create and initialize LeraningRate Variable
|
|
|
|
|
lr_value = 0.1
|
|
|
|
|
lr = scope.var('LearningRate').get_tensor()
|
|
|
|
|
lr_array = np.full((1), 2.0).astype("float32")
|
|
|
|
|
lr_array = np.full((1), lr_value).astype("float32")
|
|
|
|
|
lr.set(lr_array, place)
|
|
|
|
|
|
|
|
|
|
# optimize with Python
|
|
|
|
|
w_after_optimize = np.copy(w_before_optimize)
|
|
|
|
|
for index, id in enumerate(grad_rows):
|
|
|
|
|
w_after_optimize[id] = w_before_optimize[
|
|
|
|
|
id] - lr_value * grad_array[index]
|
|
|
|
|
|
|
|
|
|
# create and run sgd operator
|
|
|
|
|
sgd_op = Operator(
|
|
|
|
|
"sgd",
|
|
|
|
@ -136,22 +155,8 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
|
|
|
|
|
sgd_op.run(scope, place)
|
|
|
|
|
|
|
|
|
|
# get and compare result
|
|
|
|
|
result_array = np.array(param)
|
|
|
|
|
|
|
|
|
|
# rows[0] = 0, 5.0 - 2.0 * 2.0
|
|
|
|
|
self.assertAlmostEqual(1.0, result_array[rows[0], 0])
|
|
|
|
|
# rows[0] = 0, 5.0 - 2.0 * 1.0
|
|
|
|
|
self.assertAlmostEqual(3.0, result_array[rows[0], 2])
|
|
|
|
|
# 5.0 - 2.0 * 0.0
|
|
|
|
|
self.assertAlmostEqual(5.0, result_array[1, 0])
|
|
|
|
|
# rows[1] = 4, 5.0 - 2.0 * 1.0
|
|
|
|
|
self.assertAlmostEqual(3.0, result_array[rows[1], 10])
|
|
|
|
|
# 5.0 - 2.0 * 0.0
|
|
|
|
|
self.assertAlmostEqual(5.0, result_array[5, 8])
|
|
|
|
|
# rows[2] = 7, 5.0 - 2.0 * 1.0
|
|
|
|
|
self.assertAlmostEqual(3.0, result_array[rows[2], 1])
|
|
|
|
|
# rows[2] = 7, 5.0 - 2.0 * 4.0
|
|
|
|
|
self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
|
|
|
|
|
result_array = np.array(w_tensor)
|
|
|
|
|
assert (result_array == w_after_optimize).all()
|
|
|
|
|
|
|
|
|
|
def test_sparse_sgd(self):
|
|
|
|
|
places = [core.CPUPlace()]
|
|
|
|
|