|
|
|
@ -1,45 +1,156 @@
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
import paddle.v2.fluid.layers as layers
|
|
|
|
|
import paddle.v2.fluid as fluid
|
|
|
|
|
from paddle.v2.fluid.framework import Program
|
|
|
|
|
from paddle.v2.fluid.executor import Executor
|
|
|
|
|
from paddle.v2.fluid.backward import append_backward
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.v2.fluid.core as core
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelOpTest(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
x = layers.data(
|
|
|
|
|
shape=[-1, 30, 40],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
name='x',
|
|
|
|
|
append_batch_size=False,
|
|
|
|
|
stop_gradient=False)
|
|
|
|
|
|
|
|
|
|
places = layers.get_places(device_count=4)
|
|
|
|
|
pd = layers.ParallelDo(places=places)
|
|
|
|
|
|
|
|
|
|
with pd.do():
|
|
|
|
|
data = pd.read_input(x)
|
|
|
|
|
hidden = layers.fc(input=data, size=7)
|
|
|
|
|
pd.write_output(hidden)
|
|
|
|
|
data = pd()
|
|
|
|
|
loss = layers.mean(x=data)
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
|
|
|
sgd_optimizer.minimize(loss)
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={
|
|
|
|
|
x.name: np.random.uniform(0.1, 0.6,
|
|
|
|
|
(20, 30, 40)).astype("float32")
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
def test_forward(self):
|
|
|
|
|
pass
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseParallelForTest(unittest.TestCase):
|
|
|
|
|
def run_test(self, callback, feed, fetch):
|
|
|
|
|
"""
|
|
|
|
|
Run the unittest for parallel.for
|
|
|
|
|
Args:
|
|
|
|
|
callback(callable): A callable function returns a generator. There
|
|
|
|
|
are two yields in the generator function. The first yield
|
|
|
|
|
returns the data layers, and the second yield returns the loss.
|
|
|
|
|
The modified data variables will be sent back during the first
|
|
|
|
|
yield.
|
|
|
|
|
|
|
|
|
|
feed(dict): The executor feeding dictionary.
|
|
|
|
|
fetch(list|basestr): The fetch name lists.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
AssertionError when the computation of cpu, parallel.for in cpu,
|
|
|
|
|
gpu, parallel.for in gpu are different.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
cpu = fluid.CPUPlace()
|
|
|
|
|
result_cpu = self._run_test_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=cpu,
|
|
|
|
|
use_parallel=False)
|
|
|
|
|
result_cpu_parallel = self._run_test_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=cpu,
|
|
|
|
|
use_parallel=True)
|
|
|
|
|
if fluid.core.is_compile_gpu():
|
|
|
|
|
gpu = fluid.CUDAPlace(0)
|
|
|
|
|
result_gpu = self._run_test_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=gpu,
|
|
|
|
|
use_parallel=False)
|
|
|
|
|
result_gpu_parallel = self._run_test_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=gpu,
|
|
|
|
|
use_parallel=True)
|
|
|
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
|
|
|
|
|
result_gpu, result_gpu_parallel)
|
|
|
|
|
else:
|
|
|
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
|
|
|
|
|
|
|
|
|
|
def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False):
|
|
|
|
|
"""
|
|
|
|
|
Run a single test, returns the fetch values
|
|
|
|
|
Args:
|
|
|
|
|
place(Place): the computation place.
|
|
|
|
|
use_parallel(bool): Whether use parallel.for or not.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Fetched numpy arrays.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if isinstance(fetch, basestring):
|
|
|
|
|
fetch = [fetch]
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
# Fix seed
|
|
|
|
|
main.random_seed = 10
|
|
|
|
|
startup.random_seed = 10
|
|
|
|
|
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
generator = callback()
|
|
|
|
|
# Automatically insert parallel do if use_parallel = True
|
|
|
|
|
if use_parallel:
|
|
|
|
|
places = fluid.layers.get_places()
|
|
|
|
|
pd = fluid.layers.ParallelDo(places)
|
|
|
|
|
data = next(generator)
|
|
|
|
|
|
|
|
|
|
if isinstance(data, fluid.Variable):
|
|
|
|
|
data = [data]
|
|
|
|
|
|
|
|
|
|
with pd.do():
|
|
|
|
|
ins = map(pd.read_input, data)
|
|
|
|
|
if len(ins) == 1:
|
|
|
|
|
ins = ins[0]
|
|
|
|
|
loss = generator.send(ins) # patch input
|
|
|
|
|
pd.write_output(loss)
|
|
|
|
|
|
|
|
|
|
loss = pd()
|
|
|
|
|
else:
|
|
|
|
|
data = next(generator)
|
|
|
|
|
loss = generator.send(data)
|
|
|
|
|
self.assertIsNotNone(loss)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
fluid.backward.append_backward(loss=avg_loss)
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(startup)
|
|
|
|
|
return exe.run(main, feed=feed, fetch_list=fetch)
|
|
|
|
|
|
|
|
|
|
def _assert_same_(self, fetch, *args):
|
|
|
|
|
"""
|
|
|
|
|
Assert the return values of `run_test` are same.
|
|
|
|
|
Args:
|
|
|
|
|
fetch: Fetch list. Used for print error message
|
|
|
|
|
*args: The fetch result lists of each situations.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
AssertionError
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _impl_(a, b, fetch_id, item_id):
|
|
|
|
|
item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
|
|
|
|
|
flag = numpy.allclose(a, b, rtol=0.1)
|
|
|
|
|
self.assertTrue(flag, "The {0} are different in {1}".format(
|
|
|
|
|
fetch[fetch_id], item_str[item_id]))
|
|
|
|
|
|
|
|
|
|
for i, items in enumerate(zip(*args)):
|
|
|
|
|
self.assertGreater(len(items), 0)
|
|
|
|
|
for j in range(1, len(items)):
|
|
|
|
|
_impl_(items[0], items[j], fetch_id=i, item_id=j)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelOpTest(BaseParallelForTest):
|
|
|
|
|
def test_simple_fc(self):
|
|
|
|
|
def __network__():
|
|
|
|
|
x = fluid.layers.data(shape=[784], dtype='float32', name='img')
|
|
|
|
|
# FIXME: This is a bug of parallel.do
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
x = yield x
|
|
|
|
|
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
|
|
|
|
|
loss = fluid.layers.mean(x=hidden)
|
|
|
|
|
yield loss
|
|
|
|
|
|
|
|
|
|
self.run_test(
|
|
|
|
|
callback=__network__,
|
|
|
|
|
feed={
|
|
|
|
|
'img':
|
|
|
|
|
numpy.random.random(size=(128 * 3, 784)).astype('float32')
|
|
|
|
|
},
|
|
|
|
|
fetch='fc1.w@GRAD')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|