commit
aaf8401fa0
@ -0,0 +1,96 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Projection.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* SliceProjection can slice the input value into multiple parts,
|
||||
* and then select some of them to merge into a new output.
|
||||
*
|
||||
* First, calculate the slices that need to be merged into the output.
|
||||
* slices = input.slices().for_output()
|
||||
*
|
||||
* Second, merge each slice into the output.
|
||||
* for(auto slice: slices) {
|
||||
* out.addAtOffset(slice, offset);
|
||||
* }
|
||||
*
|
||||
* Input slices as output: s0, s1, ...:
|
||||
* -----------------------
|
||||
* |///| |//////| |
|
||||
* |/s0| |//s1//| |
|
||||
* |///| |//////| |
|
||||
* -----------------------
|
||||
* Output, merge s0, s1, ... into one output:
|
||||
* ----------------
|
||||
* |///|//////| |
|
||||
* |/s0|//s1//|...|
|
||||
* |///|//////| |
|
||||
* ----------------
|
||||
*
|
||||
* The config file api is slice_projection.
|
||||
*/
|
||||
class SliceProjection : public Projection {
|
||||
public:
|
||||
SliceProjection(const ProjectionConfig& config,
|
||||
const ParameterPtr& parameter,
|
||||
bool useGpu);
|
||||
virtual void forward();
|
||||
virtual void backward(const UpdateCallback& callback);
|
||||
|
||||
protected:
|
||||
std::vector<std::pair<size_t, size_t>> slices_;
|
||||
};
|
||||
|
||||
REGISTER_PROJECTION(slice, SliceProjection);
|
||||
|
||||
/**
|
||||
* Constructed function.
|
||||
* @note SliceProjection should not have any parameter.
|
||||
*/
|
||||
SliceProjection::SliceProjection(const ProjectionConfig& config,
|
||||
const ParameterPtr& parameter,
|
||||
bool useGpu)
|
||||
: Projection(config, parameter, useGpu) {
|
||||
CHECK(!parameter) << "'slice' projection should not have any parameter";
|
||||
|
||||
slices_.reserve(config.slices_size());
|
||||
for (const auto& slice : config.slices()) {
|
||||
slices_.push_back(std::make_pair(slice.start(), slice.end()));
|
||||
}
|
||||
}
|
||||
|
||||
void SliceProjection::forward() {
|
||||
size_t offset = 0;
|
||||
for (auto& slice : slices_) {
|
||||
auto slice_out = in_->value->subColMatrix(slice.first, slice.second);
|
||||
out_->value->addAtOffset(*slice_out, offset);
|
||||
offset += slice_out->getWidth();
|
||||
}
|
||||
}
|
||||
|
||||
void SliceProjection::backward(const UpdateCallback& callback) {
|
||||
if (in_->grad) {
|
||||
size_t offset = 0;
|
||||
for (auto& slice : slices_) {
|
||||
auto slice_out = in_->grad->subColMatrix(slice.first, slice.second);
|
||||
slice_out->addAtOffset(*out_->grad, offset);
|
||||
offset += slice_out->getWidth();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,41 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
settings(batch_size=10)
|
||||
|
||||
data = data_layer(name ="input", size=8*16*16)
|
||||
|
||||
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||
num_channels=8,
|
||||
num_filters=16, stride=1,
|
||||
bias_attr=False,
|
||||
act=ReluActivation())
|
||||
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||
num_channels=8,
|
||||
num_filters=16, stride=1,
|
||||
bias_attr=False,
|
||||
act=ReluActivation())
|
||||
|
||||
proj1 = slice_projection(input=conv1, slices=[(0, 4), (4, 12)])
|
||||
|
||||
proj2 = slice_projection(input=conv2, slices=[(1, 5), (5, 15)])
|
||||
|
||||
concat = concat_layer(input=[proj1, proj2])
|
||||
|
||||
outputs(concat)
|
||||
|
@ -0,0 +1,41 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
settings(batch_size=10)
|
||||
|
||||
data = data_layer(name ="input", size=8*16*16)
|
||||
|
||||
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||
num_channels=8,
|
||||
num_filters=16, stride=1,
|
||||
bias_attr=False,
|
||||
act=ReluActivation())
|
||||
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||
num_channels=8,
|
||||
num_filters=16, stride=1,
|
||||
bias_attr=False,
|
||||
act=ReluActivation())
|
||||
|
||||
proj1 = slice_projection(input=conv1, slices=[(0, 12)])
|
||||
|
||||
proj2 = slice_projection(input=conv2, slices=[(1, 15)])
|
||||
|
||||
concat = concat_layer(input=[proj1, proj2])
|
||||
|
||||
outputs(concat)
|
||||
|
Loading…
Reference in new issue