|
|
|
@ -120,6 +120,15 @@ class MKLDNNHandlerT {
|
|
|
|
|
return (dev_ctx_.GetBlob(key_p) != nullptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool isBwdCached() {
|
|
|
|
|
const std::string key_pd = key_common_ + "@bwd_pd";
|
|
|
|
|
bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
|
|
|
|
|
dev_ctx_.GetBlob(key_pd));
|
|
|
|
|
|
|
|
|
|
const std::string key_p = key_ + "@bwd_p";
|
|
|
|
|
return (dev_ctx_.GetBlob(key_p) != nullptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If your primitive descriptor requires attributes, pass them as a
|
|
|
|
|
// first argument and paramters to descriptor constructor in the following
|
|
|
|
|
// arguments. Otherwise, all arguments will be forwarded to descriptor
|
|
|
|
@ -735,210 +744,6 @@ class LRNMKLDNNHandler
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
|
|
|
|
|
mkldnn::pooling_backward> {
|
|
|
|
|
public:
|
|
|
|
|
PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
|
|
|
|
|
const MKLDNNDeviceContext& dev_ctx,
|
|
|
|
|
const mkldnn::engine mkldnn_engine,
|
|
|
|
|
platform::Place cpu_place, const Tensor* input,
|
|
|
|
|
Tensor* output, const std::string& unique_name)
|
|
|
|
|
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
|
|
|
|
|
mkldnn::pooling_backward>(
|
|
|
|
|
dev_ctx, dev_ctx.GetEngine(), cpu_place,
|
|
|
|
|
platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
|
|
|
|
|
framework::ToMKLDNNDataType(input->type()),
|
|
|
|
|
unique_name)) {
|
|
|
|
|
if (!this->isCached()) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Wrong layout set for Input tensor."));
|
|
|
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Wrong format set for Input tensor."));
|
|
|
|
|
|
|
|
|
|
const std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
|
|
|
|
|
|
|
|
|
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
|
|
|
|
|
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
|
|
|
|
|
|
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
|
|
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
|
|
|
|
|
|
const bool global_pooling = ctx.Attr<bool>("global_pooling");
|
|
|
|
|
const std::string padding_algorithm =
|
|
|
|
|
ctx.Attr<std::string>("padding_algorithm");
|
|
|
|
|
|
|
|
|
|
// Only 2D pooling is supported now
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
ksize.size(), 2,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"The ksize must be 2D, i.e. 2D pooling, but received %dD.",
|
|
|
|
|
ksize.size()));
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
pooling_type == "max" || pooling_type == "avg", true,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"The pooling_type must be 'max' or 'avg', but received %s.",
|
|
|
|
|
pooling_type));
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
input->dims().size(), 4,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Input dim must be with 4, i.e. NCHW, but received %d.",
|
|
|
|
|
input->dims().size()));
|
|
|
|
|
|
|
|
|
|
const auto input_dims = input->dims();
|
|
|
|
|
framework::DDim data_dims =
|
|
|
|
|
framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
|
|
|
|
|
|
|
|
if (global_pooling) {
|
|
|
|
|
operators::UpdateKsize(&ksize, data_dims);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
|
|
|
|
|
data_dims, strides, ksize);
|
|
|
|
|
|
|
|
|
|
const auto src_tz = paddle::framework::vectorize(input->dims());
|
|
|
|
|
const auto dst_tz = paddle::framework::vectorize(output->dims());
|
|
|
|
|
|
|
|
|
|
const auto is_test = ctx.Attr<bool>("is_test");
|
|
|
|
|
|
|
|
|
|
const auto dt = framework::ToMKLDNNDataType(input->type());
|
|
|
|
|
const auto fmt = input->format();
|
|
|
|
|
|
|
|
|
|
const auto exclude_padding = ctx.Attr<bool>("exclusive");
|
|
|
|
|
|
|
|
|
|
const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
|
|
|
|
|
/* create memory descriptor for pooling without specified format
|
|
|
|
|
* ('any') which lets a primitive (pooling in this case) choose
|
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
const auto dst_md =
|
|
|
|
|
platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
|
|
|
|
|
|
|
|
|
|
auto mkldnn_paddings = ToMkldnnPadding(paddings);
|
|
|
|
|
|
|
|
|
|
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
|
|
|
|
|
|
|
|
|
|
if (ceil_mode) {
|
|
|
|
|
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ComputeAdaptivePoolParameters(ctx, src_tz, ksize, strides);
|
|
|
|
|
|
|
|
|
|
this->AcquireForwardPrimitiveDescriptor(
|
|
|
|
|
is_test ? mkldnn::prop_kind::forward_inference
|
|
|
|
|
: mkldnn::prop_kind::forward_training,
|
|
|
|
|
pooling_type == "max"
|
|
|
|
|
? mkldnn::algorithm::pooling_max
|
|
|
|
|
: (exclude_padding
|
|
|
|
|
? mkldnn::algorithm::pooling_avg_exclude_padding
|
|
|
|
|
: mkldnn::algorithm::pooling_avg_include_padding),
|
|
|
|
|
src_md, dst_md, strides, ksize, mkldnn_paddings[0],
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
PoolingMKLDNNHandler(
|
|
|
|
|
const std::vector<int64_t>& diff_dst_dims,
|
|
|
|
|
const std::vector<int64_t>& diff_src_dims,
|
|
|
|
|
const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
|
|
|
|
|
const std::vector<int64_t>& paddings, const std::string& pooling_type,
|
|
|
|
|
bool ceil_mode, const MKLDNNMemoryFormat fmt,
|
|
|
|
|
const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
|
|
|
|
|
const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
|
|
|
|
|
const std::string& unique_name, bool exclude_padding)
|
|
|
|
|
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
|
|
|
|
|
mkldnn::pooling_backward>(
|
|
|
|
|
dev_ctx, dev_ctx.GetEngine(), cpu_place,
|
|
|
|
|
platform::CreateKey(dev_ctx, diff_src_dims, dt, unique_name)) {
|
|
|
|
|
auto diff_dst_md = mkldnn::memory::desc(
|
|
|
|
|
diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
|
|
|
|
|
auto diff_src_md =
|
|
|
|
|
mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
|
|
|
|
|
MKLDNNMemoryFormat::any);
|
|
|
|
|
|
|
|
|
|
auto mkldnn_paddings = ToMkldnnPadding(paddings);
|
|
|
|
|
|
|
|
|
|
this->AcquireBackwardPrimitiveDescriptor(
|
|
|
|
|
pooling_type == "max"
|
|
|
|
|
? mkldnn::algorithm::pooling_max
|
|
|
|
|
: (exclude_padding
|
|
|
|
|
? mkldnn::algorithm::pooling_avg_exclude_padding
|
|
|
|
|
: mkldnn::algorithm::pooling_avg_include_padding),
|
|
|
|
|
diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
|
|
|
|
|
mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
|
|
|
|
|
// Pooling PD has to be passed to Grad op that
|
|
|
|
|
// may be executed by diffrent thread, hence
|
|
|
|
|
// for that one we use key that does not contain TID
|
|
|
|
|
auto local_key = this->key_common_ + "@workspace";
|
|
|
|
|
auto mem_p = std::static_pointer_cast<mkldnn::memory>(
|
|
|
|
|
this->dev_ctx_.GetBlob(local_key));
|
|
|
|
|
if (mem_p == nullptr) {
|
|
|
|
|
static std::mutex acquire_barrier;
|
|
|
|
|
std::lock_guard<std::mutex> block_threads_until_finish_this_job(
|
|
|
|
|
acquire_barrier);
|
|
|
|
|
mem_p = std::static_pointer_cast<mkldnn::memory>(
|
|
|
|
|
this->dev_ctx_.GetBlob(local_key));
|
|
|
|
|
if (mem_p == nullptr) {
|
|
|
|
|
mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
|
|
|
|
|
this->dev_ctx_.SetBlob(local_key, mem_p);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return mem_p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void ComputeAdaptivePoolParameters(
|
|
|
|
|
const paddle::framework::ExecutionContext& ctx,
|
|
|
|
|
const std::vector<int64_t>& src_tz, std::vector<int64_t>& ksize,
|
|
|
|
|
std::vector<int64_t>& strides) {
|
|
|
|
|
if (ctx.Attr<bool>("adaptive")) {
|
|
|
|
|
// (jczaja): oneDNN is supporting only unchangable in size pool window
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
src_tz[src_tz.size() - 1] % ksize[1], 0,
|
|
|
|
|
platform::errors::Unimplemented(
|
|
|
|
|
"Input dim must be divisible by corressponding ksize dim."));
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
src_tz[src_tz.size() - 2] % ksize[0], 0,
|
|
|
|
|
platform::errors::Unimplemented(
|
|
|
|
|
"Input dim must be divisible by corressponding ksize dim."));
|
|
|
|
|
ksize[0] = src_tz[src_tz.size() - 2] / ksize[0];
|
|
|
|
|
ksize[1] = src_tz[src_tz.size() - 1] / ksize[1];
|
|
|
|
|
strides[0] = ksize[0];
|
|
|
|
|
strides[1] = ksize[1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
|
|
|
|
|
int padding, int stride) {
|
|
|
|
|
return (input_size - kernel_size + 2 * padding) / stride + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void CorrectOutputSize(
|
|
|
|
|
const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
|
|
|
|
|
const std::vector<int64_t>& kernel_size,
|
|
|
|
|
const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
|
|
|
|
|
std::vector<int64_t>& right_bot_padding) { // NOLINT
|
|
|
|
|
for (size_t i = 0; i < right_bot_padding.size(); i++) {
|
|
|
|
|
int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
|
|
|
|
|
paddings[i], strides[i]);
|
|
|
|
|
if (desired_size != dst_tz[i + 2]) {
|
|
|
|
|
right_bot_padding[i] += strides[i] - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class TransposeMKLDNNHandler : public MKLDNNHandler {
|
|
|
|
|
public:
|
|
|
|
|