parent
e9d79dd5d7
commit
afa64a5cfa
@ -0,0 +1,47 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from math import log
|
||||
from math import exp
|
||||
from op_test import OpTest
|
||||
import unittest
|
||||
|
||||
|
||||
class TestCVMOp(OpTest):
|
||||
"""
|
||||
Test cvm op with discrete one-hot labels.
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "cvm"
|
||||
batch_size = 4
|
||||
dims = 11
|
||||
lod = [[1]]
|
||||
self.inputs = {
|
||||
'X': (np.random.uniform(0, 1, [1, dims]).astype("float32"), lod),
|
||||
'CVM': np.array([[0.6, 0.4]]).astype("float32"),
|
||||
}
|
||||
self.attrs = {'use_cvm': False}
|
||||
out = []
|
||||
for index, emb in enumerate(self.inputs["X"][0]):
|
||||
out.append(emb[2:])
|
||||
self.outputs = {'Y': (np.array(out), lod)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue