|
|
|
@ -1827,7 +1827,6 @@ def img_pool_layer(input, pool_size, name=None,
|
|
|
|
|
@layer_support()
|
|
|
|
|
def spp_layer(input, name=None, num_channels=None, pool_type=None,
|
|
|
|
|
pyramid_height=None, img_width=None, layer_attr=None):
|
|
|
|
|
pass
|
|
|
|
|
"""
|
|
|
|
|
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
|
|
|
|
|
The details please refer to
|
|
|
|
@ -1864,7 +1863,7 @@ def spp_layer(input, name=None, num_channels=None, pool_type=None,
|
|
|
|
|
if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
|
|
|
|
|
type_name += '-projection'
|
|
|
|
|
|
|
|
|
|
Layer(
|
|
|
|
|
l = Layer(
|
|
|
|
|
name=name,
|
|
|
|
|
type=LayerType.SPP_LAYER,
|
|
|
|
|
inputs=Input(input.name,
|
|
|
|
@ -1875,8 +1874,8 @@ def spp_layer(input, name=None, num_channels=None, pool_type=None,
|
|
|
|
|
),
|
|
|
|
|
**ExtraLayerAttribute.to_kwargs(layer_attr)
|
|
|
|
|
)
|
|
|
|
|
return LayerOutput(name, LayerType.SPP_LAYER, parents=[input],
|
|
|
|
|
num_filters=num_channels)
|
|
|
|
|
return LayerOutput(name, layer_type=LayerType.SPP_LAYER, parents=[input],
|
|
|
|
|
num_filters=num_channels, size=l.config.size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __img_norm_layer__(name, input, size, norm_type, scale, power,
|
|
|
|
|