Adding the squared L2 norm operator for L2 regularization (#5030)
* Adding the L2 loss operator for L2 regularization * Renaming l2_loss op to squared_l2_norm_op * Addressing code review feedbackrevert-4814-Add_sequence_project_op
parent
b68f2d209a
commit
b0a267c0b8
@ -0,0 +1,78 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/squared_l2_norm_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class SquaredL2NormOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
|
||||
|
||||
ctx->SetOutputDim("Out", {1});
|
||||
}
|
||||
};
|
||||
|
||||
class SquaredL2NormGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
||||
"Output(X@GRAD) should be not null.");
|
||||
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
}
|
||||
};
|
||||
|
||||
class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SquaredL2NormOpMaker(framework::OpProto* proto,
|
||||
framework::OpAttrChecker* op_checker)
|
||||
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "(Tensor) The input of squared_l2_norm op.");
|
||||
AddOutput("Out", "(Float) The output of squared_l2_norm op.");
|
||||
AddComment(R"DOC(
|
||||
SquaredL2Norm Operator.
|
||||
|
||||
Computes the squared L2 norm of a tensor.
|
||||
|
||||
Out = sum (X ** 2)
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(squared_l2_norm, ops::SquaredL2NormOp, ops::SquaredL2NormOpMaker,
|
||||
squared_l2_norm_grad, ops::SquaredL2NormGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
squared_l2_norm,
|
||||
ops::SquaredL2NormKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
squared_l2_norm_grad,
|
||||
ops::SquaredL2NormGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,24 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/squared_l2_norm_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
squared_l2_norm,
|
||||
ops::SquaredL2NormKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
squared_l2_norm_grad,
|
||||
ops::SquaredL2NormGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,64 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
// Out = sum(square(X))
|
||||
template <typename Place, typename T>
|
||||
class SquaredL2NormKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
const framework::Tensor *X = context.Input<framework::Tensor>("X");
|
||||
framework::Tensor *Out = context.Output<framework::Tensor>("Out");
|
||||
Out->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto x = framework::EigenVector<T>::Flatten(*X);
|
||||
auto out = framework::EigenVector<T>::Flatten(*Out);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
|
||||
out.device(place) = x.square().sum();
|
||||
}
|
||||
};
|
||||
|
||||
// dX = X
|
||||
template <typename Place, typename T>
|
||||
class SquaredL2NormGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
const framework::Tensor *X = context.Input<framework::Tensor>("X");
|
||||
const framework::Tensor *dOut =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
PADDLE_ENFORCE(dOut->numel() == 1,
|
||||
"Squared L2 Norm Gradient should be scalar");
|
||||
framework::Tensor *dX =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
dX->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto x = framework::EigenVector<T>::Flatten(*X);
|
||||
auto dout = framework::EigenVector<T>::Flatten(*dOut);
|
||||
auto dx = framework::EigenVector<T>::Flatten(*dX);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
|
||||
Eigen::DSizes<int, 1> x_dsize(X->numel());
|
||||
dx.device(place) = (dout.broadcast(x_dsize) * x) * static_cast<T>(2.0);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,29 @@
|
||||
import numpy as np
|
||||
import unittest
|
||||
from numpy import linalg as LA
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestL2LossOp(OpTest):
|
||||
"""Test squared_l2_norm
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "squared_l2_norm"
|
||||
self.max_relative_error = 0.05
|
||||
|
||||
X = np.random.uniform(-1, 1, (13, 19)).astype("float32")
|
||||
X[np.abs(X) < self.max_relative_error] = 0.1
|
||||
self.inputs = {'X': X}
|
||||
self.outputs = {'Out': np.square(LA.norm(X))}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=self.max_relative_error)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue