Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/clean_op_maker

testDrivenImageClassification
reyoung 7 years ago
commit b0ca371f11

@ -53,7 +53,7 @@ ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.11"
GIT_TAG "v0.14"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}

@ -0,0 +1 @@
../../v2/build_and_install/paddleci.png

@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime
## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_op_with_kern_class_diagram.dot)
---
## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op.dot)
* `Operator` is the fundamental building block of the user interface.
* Operator stores input/output variable names and attributes.
@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime
## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map.

@ -0,0 +1,4 @@
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
}

@ -0,0 +1,38 @@
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
mul_op [label="MulOp"]
op_with_kern -> mul_op [dir=back, arrowtail=onormal]
mul_kernel [label="template <typename Place>\lclass MulOpKernel\l"]
op_kernel -> mul_kernel [dir=back, arrowtail=onormal]
mul_op -> mul_kernel [arrowhead=vee, label="register many"]
{
rank=same;
mul_op;
mul_kernel;
}
}

@ -0,0 +1,26 @@
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
}

@ -5,7 +5,7 @@
充分展现英特尔平台的优势有效提升PaddlePaddle在英特尔架构上的性能。
<div align="center">
<img src="image/overview.png"><br/>
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/overview.png"><br/>
Figure 1. PaddlePaddle on IA
</div>
@ -42,16 +42,43 @@ Figure 1. PaddlePaddle on IA
MKLMKLML以及MKL-DNN三者关系如下表
| Name | Open Source | License | Descriptions |
| :---------- | :--------------- | :---------- | :------------ |
| MKL | No | Proprietary | Accelerate math processing routines |
| MKLML | No | Proprietary | Small package of MKL, especially for Machine Learning |
| MKL-DNN | Yes | Apache 2.0 | Accelerate primitives processing routines especially for Deep Neural Networks |
<table>
<thead>
<tr>
<th>Name</th>
<th>Open Source</th>
<th>License</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKL</td>
<td>No</td>
<td>Proprietary</td>
<td>Accelerate math processing routines</td>
</tr>
<tr>
<td>MKLML</td>
<td>No</td>
<td>Proprietary</td>
<td>Small package of MKL, especially for Machine Learning</td>
</tr>
<tr>
<td>MKL-DNN</td>
<td>Yes</td>
<td>Apache 2.0</td>
<td>Accelerate primitives processing routines especially for Deep Neural Networks</td>
</tr>
</tbody>
</table>
MKLML可以与MKL-DNN共同使用以此达到最好的性能。
<div align="center">
<img src="image/engine.png"><br/>
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/engine.png"><br/>
Figure 2. PaddlePaddle with MKL Engines
</div>
@ -103,7 +130,7 @@ MKL-DNN的库目前只有动态库`libmkldnn.so`。
所以我们定义了一个`MKLDNNMatrix`用于管理MKL-DNN数据的不同格式以及相互之间的转换。
<div align="center">
<img src="image/matrix.png"><br/>
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/matrix.png"><br/>
Figure 3. MKLDNNMatrix
</div>
@ -113,7 +140,7 @@ Figure 3. MKLDNNMatrix
子类只需要使用定义好的接口,实现具体的函数功能即可。
<div align="center">
<img src="image/layers.png"><br/>
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/layers.png"><br/>
Figure 4. MKLDNNLayer
</div>
@ -150,7 +177,7 @@ Figure 4. MKLDNNLayer
所以整体上,在实现每个子类的时候就不需要关心分支的事情了。
<div align="center">
<img src="image/gradients.png"><br/>
<img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/gradients.png"><br/>
Figure 5. Merge Gradients
</div>

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 236 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 361 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

@ -0,0 +1,42 @@
digraph G{
subgraph cluster_timestep0 {
label="recurrent timestep i-1"
bgcolor=lightgray
node [style=filled,color=white]
fc0_0 [label="fc 0"]
fc0_1 [label="fc 1"]
fc0_2 [label="fc 2"]
fc0_0 -> fc0_1
fc0_1 -> fc0_2
}
subgraph cluster_timestep1 {
label="recurrent timestep i"
node [style=filled];
fc1_0 [label="fc 0"]
fc1_1 [label="fc 1"]
fc1_2 [label="fc 2"]
color=blue
fc1_0 -> fc1_1
fc1_1 -> fc1_2
}
subgraph cluster_timestep2 {
label="recurrent timestep i+1"
bgcolor=lightgray
node [style=filled,color=white]
fc2_0 [label="fc 0"]
fc2_1 [label="fc 1"]
fc2_2 [label="fc 2"]
fc2_0 -> fc2_1
fc2_1 -> fc2_2
}
fc0_1 -> fc1_1 [style="dotted" constraint=false]
fc1_1 -> fc2_1 [style="dotted" constraint=false]
}

@ -0,0 +1,48 @@
digraph G{
subgraph cluster_timestep0 {
label="recurrent timestep i-1"
bgcolor=lightgray
node [style=filled,color=white]
fc0_0 [label="fc 0"]
fc0_1 [label="fc 1"]
fc0_2 [label="fc 2"]
m0 [label="memory"]
fc0_0 -> fc0_1
fc0_1 -> fc0_2
fc0_1 -> m0
m0 -> fc0_1
}
subgraph cluster_timestep1 {
label="recurrent timestep i"
node [style=filled];
fc1_0 [label="fc 0"]
fc1_1 [label="fc 1"]
fc1_2 [label="fc 2"]
m1 [label="memory"]
color=blue
fc1_0 -> fc1_1
fc1_1 -> fc1_2
fc1_1 -> m1
m1 -> fc1_1
}
subgraph cluster_timestep2 {
label="recurrent timestep i+1"
bgcolor=lightgray
node [style=filled,color=white]
fc2_0 [label="fc 0"]
fc2_1 [label="fc 1"]
fc2_2 [label="fc 2"]
m2 [label="memory"]
fc2_0 -> fc2_1
fc2_1 -> fc2_2
fc2_1 -> m2
m2 -> fc2_1
}
m0 -> m1 [style="dotted" constraint=false]
m1 -> m2 [style="dotted" constraint=false]
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save