Add conv2d bfloat16 support (#27325)
parent
b38e4f2840
commit
b0ee1405f7
@ -0,0 +1,208 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import struct
|
||||
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
|
||||
from paddle.fluid.tests.unittests.test_conv2d_op import conv2d_forward_naive, TestConv2dOp
|
||||
|
||||
|
||||
def conv2d_forward_refer(input, filter, group, conv_param):
|
||||
out, in_n, out_h, out_w, out_c = conv2d_forward_naive(input, filter, group,
|
||||
conv_param)
|
||||
return out
|
||||
|
||||
|
||||
def conv2d_residual_naive(out, residual):
|
||||
assert out.shape == residual.shape
|
||||
out = np.add(out, residual)
|
||||
return out
|
||||
|
||||
|
||||
class TestConv2dBf16Op(TestConv2dOp):
|
||||
def setUp(self):
|
||||
self.op_type = "conv2d"
|
||||
self.use_cudnn = False
|
||||
self.exhaustive_search = False
|
||||
self.use_cuda = False
|
||||
self.use_mkldnn = True
|
||||
self.weight_type = np.float32
|
||||
self.input_type = np.float32
|
||||
self.use_mkldnn = True
|
||||
self.mkldnn_data_type = "bfloat16"
|
||||
self.force_fp32_output = False
|
||||
self.init_group()
|
||||
self.init_dilation()
|
||||
self.init_test_case()
|
||||
self.init_fuse_relu()
|
||||
self.init_fuse_residual()
|
||||
self.init_data_type()
|
||||
self.init_force_fp32_output()
|
||||
|
||||
conv2d_param = {
|
||||
'stride': self.stride,
|
||||
'pad': self.pad,
|
||||
'dilation': self.dilations
|
||||
}
|
||||
self.input = np.random.random(self.input_size).astype(np.float32)
|
||||
self.filter = np.random.random(self.filter_size).astype(np.float32)
|
||||
conv_out, _, _, _, _ = conv2d_forward_naive(self.input, self.filter,
|
||||
self.groups, conv2d_param)
|
||||
self.conv_output_float = conv_out
|
||||
|
||||
if self.fuse_residual:
|
||||
self.input_residual = np.random.random(
|
||||
self.input_residual_size).astype(np.float32)
|
||||
self.conv_output_float = conv2d_residual_naive(
|
||||
self.conv_output_float, self.input_residual)
|
||||
self.conv_output = convert_float_to_uint16(self.conv_output_float)
|
||||
self.outputs = {'Output': self.conv_output}
|
||||
elif self.force_fp32_output:
|
||||
self.outputs = {'Output': self.conv_output_float.astype(np.float32)}
|
||||
|
||||
if self.input_type is not np.float32:
|
||||
self.input = convert_float_to_uint16(self.input)
|
||||
|
||||
self.inputs = {
|
||||
'Input': self.input.view(self.input_type),
|
||||
'Filter': OpTest.np_dtype_to_fluid_dtype(
|
||||
self.filter.astype(self.weight_type))
|
||||
}
|
||||
|
||||
if self.fuse_residual:
|
||||
self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype(
|
||||
convert_float_to_uint16(self.input_residual))
|
||||
|
||||
self.attrs = {
|
||||
'strides': self.stride,
|
||||
'paddings': self.pad,
|
||||
'groups': self.groups,
|
||||
'dilations': self.dilations,
|
||||
'use_cudnn': self.use_cudnn,
|
||||
'use_mkldnn': self.use_mkldnn,
|
||||
'mkldnn_data_type': self.mkldnn_data_type,
|
||||
'force_fp32_output': self.force_fp32_output,
|
||||
'fuse_residual_connection': self.fuse_residual
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(core.CPUPlace())
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def test_check_grad_no_filter(self):
|
||||
pass
|
||||
|
||||
def test_check_grad_no_input(self):
|
||||
pass
|
||||
|
||||
def init_test_case(self):
|
||||
TestConv2dOp.init_test_case(self)
|
||||
self.input_size = [1, 1, 5, 5] # NCHW
|
||||
f_c = self.input_size[1] // self.groups
|
||||
self.input_residual_size = [1, 2, 3, 3]
|
||||
self.filter_size = [2, f_c, 3, 3]
|
||||
|
||||
def init_data_type(self):
|
||||
self.weight_type = np.float32
|
||||
self.input_type = np.float32
|
||||
|
||||
def init_force_fp32_output(self):
|
||||
self.force_fp32_output = False
|
||||
|
||||
def init_fuse_relu(self):
|
||||
self.fuse_activation = "relu"
|
||||
|
||||
def init_fuse_residual(self):
|
||||
self.fuse_residual = True
|
||||
|
||||
|
||||
class TestConv2d(TestConv2dBf16Op):
|
||||
def init_test_case(self):
|
||||
self.pad = [0, 0]
|
||||
self.stride = [1, 1]
|
||||
self.input_size = [2, 3, 5, 5] # NCHW
|
||||
self.input_residual_size = [2, 6, 3, 3]
|
||||
assert np.mod(self.input_size[1], self.groups) == 0
|
||||
f_c = self.input_size[1] // self.groups
|
||||
self.filter_size = [6, f_c, 3, 3]
|
||||
|
||||
def init_data_type(self):
|
||||
self.input_type = np.uint16
|
||||
|
||||
|
||||
class TestWithPad(TestConv2d):
|
||||
def init_test_case(self):
|
||||
TestConv2d.init_test_case(self)
|
||||
self.pad = [1, 1]
|
||||
self.input_residual_size = [2, 6, 5, 5]
|
||||
|
||||
|
||||
class TestWithGroup(TestConv2d):
|
||||
def init_group(self):
|
||||
self.groups = 3
|
||||
|
||||
|
||||
class TestWithStride(TestConv2dBf16Op):
|
||||
def init_test_case(self):
|
||||
self.pad = [1, 1]
|
||||
self.stride = [2, 2]
|
||||
self.input_size = [2, 3, 6, 6]
|
||||
self.input_residual_size = [2, 6, 3, 3]
|
||||
assert np.mod(self.input_size[1], self.groups) == 0
|
||||
f_c = self.input_size[1] // self.groups
|
||||
self.filter_size = [6, f_c, 3, 3]
|
||||
|
||||
def init_data_type(self):
|
||||
self.input_type = np.uint16
|
||||
|
||||
|
||||
class TestWith1x1ForceFP32Output(TestConv2dBf16Op):
|
||||
def init_test_case(self):
|
||||
self.pad = [0, 0]
|
||||
self.stride = [1, 1]
|
||||
self.input_size = [1, 3, 5, 5]
|
||||
assert np.mod(self.input_size[1], self.groups) == 0
|
||||
f_c = self.input_size[1] // self.groups
|
||||
self.filter_size = [6, f_c, 1, 1]
|
||||
|
||||
def init_force_fp32_output(self):
|
||||
self.force_fp32_output = True
|
||||
|
||||
def init_fuse_residual(self):
|
||||
self.fuse_residual = False
|
||||
|
||||
|
||||
class TestWithInput1x1Filter1x1(TestConv2dBf16Op):
|
||||
def init_test_case(self):
|
||||
self.pad = [0, 0]
|
||||
self.stride = [1, 1]
|
||||
self.input_size = [2, 3, 1, 1]
|
||||
self.input_residual_size = [2, 6, 1, 1]
|
||||
assert np.mod(self.input_size[1], self.groups) == 0
|
||||
f_c = self.input_size[1] // self.groups
|
||||
self.filter_size = [6, f_c, 1, 1]
|
||||
|
||||
def init_group(self):
|
||||
self.groups = 3
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue