|
|
|
@ -14,6 +14,7 @@
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
#include "paddle/operators/lstm_op.h"
|
|
|
|
|
#include "paddle/operators/math/gru_compute.h"
|
|
|
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
|
#include "paddle/operators/math/sequence2batch.h"
|
|
|
|
@ -24,20 +25,12 @@
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
|
|
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
|
class GRUKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void BatchCompute(const framework::ExecutionContext& context) const {
|
|
|
|
|
auto* input = context.Input<LoDTensor>("Input");
|
|
|
|
|
auto* h0 = context.Input<Tensor>("H0");
|
|
|
|
|
const T* h0_data = h0 ? h0->data<T>() : nullptr;
|
|
|
|
|
auto* weight = context.Input<Tensor>("Weight");
|
|
|
|
|
const T* weight_data = weight->data<T>();
|
|
|
|
|
auto* bias = context.Input<Tensor>("Bias");
|
|
|
|
@ -74,7 +67,18 @@ class GRUKernel : public framework::OpKernel<T> {
|
|
|
|
|
gru_value.gateWeight = const_cast<T*>(weight_data);
|
|
|
|
|
gru_value.stateWeight =
|
|
|
|
|
const_cast<T*>(weight_data + 2 * frame_size * frame_size);
|
|
|
|
|
gru_value.prevOutValue = const_cast<T*>(h0_data);
|
|
|
|
|
Tensor ordered_h0;
|
|
|
|
|
const size_t* order = batch_gate->lod()[2].data();
|
|
|
|
|
if (h0) {
|
|
|
|
|
// Since the batch computing for GRU reorders the input sequences
|
|
|
|
|
// according to their length. The initialized cell state also needs
|
|
|
|
|
// to reorder.
|
|
|
|
|
ReorderInitState<Place, T>(context.device_context(), *h0, order,
|
|
|
|
|
&ordered_h0, true);
|
|
|
|
|
gru_value.prevOutValue = ordered_h0.data<T>();
|
|
|
|
|
} else {
|
|
|
|
|
gru_value.prevOutValue = nullptr;
|
|
|
|
|
}
|
|
|
|
|
auto batch_starts = batch_gate->lod()[0];
|
|
|
|
|
size_t num_batch = batch_starts.size() - 1;
|
|
|
|
|
for (size_t n = 0; n < num_batch; n++) {
|
|
|
|
@ -110,7 +114,6 @@ class GRUGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void BatchCompute(const framework::ExecutionContext& context) const {
|
|
|
|
|
auto* h0 = context.Input<Tensor>("H0");
|
|
|
|
|
const T* h0_data = h0 ? h0->data<T>() : nullptr;
|
|
|
|
|
auto* weight = context.Input<Tensor>("Weight");
|
|
|
|
|
const T* weight_data = weight->data<T>();
|
|
|
|
|
auto* batch_gate = context.Input<LoDTensor>("BatchGate");
|
|
|
|
@ -143,6 +146,16 @@ class GRUGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
zero(context.device_context(), &batch_reset_hidden_prev_grad,
|
|
|
|
|
static_cast<T>(0.0));
|
|
|
|
|
|
|
|
|
|
Tensor ordered_h0, ordered_h0_grad;
|
|
|
|
|
const size_t* order = batch_gate->lod()[2].data();
|
|
|
|
|
if (h0) {
|
|
|
|
|
ReorderInitState<Place, T>(context.device_context(), *h0, order,
|
|
|
|
|
&ordered_h0, true);
|
|
|
|
|
}
|
|
|
|
|
if (h0_grad) {
|
|
|
|
|
ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool is_reverse = context.Attr<bool>("is_reverse");
|
|
|
|
|
batch_hidden_grad.set_lod(batch_hidden->lod());
|
|
|
|
|
to_batch(context.device_context(), *hidden_grad, batch_hidden_grad, false,
|
|
|
|
@ -185,11 +198,13 @@ class GRUGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
batch_reset_hidden_prev_grad.Slice(bstart, bend);
|
|
|
|
|
gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data<T>();
|
|
|
|
|
if (n == 0) {
|
|
|
|
|
gru_value.prevOutValue = const_cast<T*>(h0_data);
|
|
|
|
|
if (h0_grad) {
|
|
|
|
|
T* h0_grad_data = h0_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
|
zero(context.device_context(), h0_grad, static_cast<T>(0.0));
|
|
|
|
|
gru_grad.prevOutGrad = h0_grad_data;
|
|
|
|
|
if (h0) {
|
|
|
|
|
gru_value.prevOutValue = ordered_h0.data<T>();
|
|
|
|
|
} else {
|
|
|
|
|
gru_value.prevOutValue = nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (h0 && h0_grad) {
|
|
|
|
|
gru_grad.prevOutGrad = ordered_h0_grad.data<T>();
|
|
|
|
|
} else {
|
|
|
|
|
gru_grad.prevOutGrad = nullptr;
|
|
|
|
|
}
|
|
|
|
@ -220,6 +235,10 @@ class GRUGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
|
|
|
|
|
}
|
|
|
|
|
if (h0 && h0_grad) {
|
|
|
|
|
ReorderInitState<Place, T>(context.device_context(), ordered_h0_grad,
|
|
|
|
|
order, h0_grad, false);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|