|
|
|
@ -12,44 +12,74 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
import paddle.v2.fluid as fluid
|
|
|
|
|
import contextlib
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
|
|
|
|
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
|
|
|
def main(use_cuda):
|
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
|
|
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
|
|
|
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
|
|
|
|
|
BATCH_SIZE = 20
|
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
|
paddle.dataset.uci_housing.train(), buf_size=500),
|
|
|
|
|
batch_size=BATCH_SIZE)
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
BATCH_SIZE = 20
|
|
|
|
|
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
|
paddle.dataset.uci_housing.train(), buf_size=500),
|
|
|
|
|
batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
|
PASS_NUM = 100
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
fluid.io.save_persistables(exe, "./fit_a_line.model/")
|
|
|
|
|
fluid.io.load_persistables(exe, "./fit_a_line.model/")
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
avg_loss_value, = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost])
|
|
|
|
|
print(avg_loss_value)
|
|
|
|
|
if avg_loss_value[0] < 10.0:
|
|
|
|
|
exit(0) # if avg cost less than 10.0, we think our code is good.
|
|
|
|
|
exit(1)
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
PASS_NUM = 100
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
fluid.io.save_persistables(exe, "./fit_a_line.model/")
|
|
|
|
|
fluid.io.load_persistables(exe, "./fit_a_line.model/")
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
avg_loss_value, = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost])
|
|
|
|
|
print(avg_loss_value)
|
|
|
|
|
if avg_loss_value[0] < 10.0:
|
|
|
|
|
return
|
|
|
|
|
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
|
|
|
|
|
avg_loss_value[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFitALine(unittest.TestCase):
|
|
|
|
|
def test_cpu(self):
|
|
|
|
|
with self.program_scope_guard():
|
|
|
|
|
main(use_cuda=False)
|
|
|
|
|
|
|
|
|
|
def test_cuda(self):
|
|
|
|
|
with self.program_scope_guard():
|
|
|
|
|
main(use_cuda=True)
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
|
def program_scope_guard(self):
|
|
|
|
|
prog = fluid.Program()
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with fluid.program_guard(prog, startup_prog):
|
|
|
|
|
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|