|
|
|
@ -1349,9 +1349,9 @@ def last_seq(input,
|
|
|
|
|
"""
|
|
|
|
|
Get Last Timestamp Activation of a sequence.
|
|
|
|
|
|
|
|
|
|
If stride > 0, this layer slides a window whose size is determined by stride,
|
|
|
|
|
and return the last value of the window as the output. Thus, a long sequence
|
|
|
|
|
will be shorten. Note that for sequence with sub-sequence, the default value
|
|
|
|
|
If stride > 0, this layer slides a window whose size is determined by stride,
|
|
|
|
|
and return the last value of the window as the output. Thus, a long sequence
|
|
|
|
|
will be shorten. Note that for sequence with sub-sequence, the default value
|
|
|
|
|
of stride is -1.
|
|
|
|
|
|
|
|
|
|
The simple usage is:
|
|
|
|
@ -1365,7 +1365,7 @@ def last_seq(input,
|
|
|
|
|
:type name: basestring
|
|
|
|
|
:param input: Input layer name.
|
|
|
|
|
:type input: LayerOutput
|
|
|
|
|
:param stride: window size.
|
|
|
|
|
:param stride: window size.
|
|
|
|
|
:type stride: Int
|
|
|
|
|
:param layer_attr: extra layer attributes.
|
|
|
|
|
:type layer_attr: ExtraLayerAttribute.
|
|
|
|
@ -1405,9 +1405,9 @@ def first_seq(input,
|
|
|
|
|
"""
|
|
|
|
|
Get First Timestamp Activation of a sequence.
|
|
|
|
|
|
|
|
|
|
If stride > 0, this layer slides a window whose size is determined by stride,
|
|
|
|
|
and return the first value of the window as the output. Thus, a long sequence
|
|
|
|
|
will be shorten. Note that for sequence with sub-sequence, the default value
|
|
|
|
|
If stride > 0, this layer slides a window whose size is determined by stride,
|
|
|
|
|
and return the first value of the window as the output. Thus, a long sequence
|
|
|
|
|
will be shorten. Note that for sequence with sub-sequence, the default value
|
|
|
|
|
of stride is -1.
|
|
|
|
|
|
|
|
|
|
The simple usage is:
|
|
|
|
@ -1421,7 +1421,7 @@ def first_seq(input,
|
|
|
|
|
:type name: basestring
|
|
|
|
|
:param input: Input layer name.
|
|
|
|
|
:type input: LayerOutput
|
|
|
|
|
:param stride: window size.
|
|
|
|
|
:param stride: window size.
|
|
|
|
|
:type stride: Int
|
|
|
|
|
:param layer_attr: extra layer attributes.
|
|
|
|
|
:type layer_attr: ExtraLayerAttribute.
|
|
|
|
@ -1561,7 +1561,7 @@ def seq_reshape_layer(input,
|
|
|
|
|
bias_attr=None):
|
|
|
|
|
"""
|
|
|
|
|
A layer for reshaping the sequence. Assume the input sequence has T instances,
|
|
|
|
|
the dimension of each instance is M, and the input reshape_size is N, then the
|
|
|
|
|
the dimension of each instance is M, and the input reshape_size is N, then the
|
|
|
|
|
output sequence has T*M/N instances, the dimension of each instance is N.
|
|
|
|
|
|
|
|
|
|
Note that T*M/N must be an integer.
|
|
|
|
@ -2118,8 +2118,8 @@ def img_conv_layer(input,
|
|
|
|
|
:param trans: true if it is a convTransLayer, false if it is a convLayer
|
|
|
|
|
:type trans: bool
|
|
|
|
|
:param layer_type: specify the layer_type, default is None. If trans=True,
|
|
|
|
|
layer_type has to be "exconvt" or "cudnn_convt",
|
|
|
|
|
otherwise layer_type has to be either "exconv" or
|
|
|
|
|
layer_type has to be "exconvt" or "cudnn_convt",
|
|
|
|
|
otherwise layer_type has to be either "exconv" or
|
|
|
|
|
"cudnn_conv"
|
|
|
|
|
:type layer_type: String
|
|
|
|
|
:return: LayerOutput object.
|
|
|
|
@ -2337,9 +2337,9 @@ def spp_layer(input,
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
spp = spp_layer(input=data,
|
|
|
|
|
pyramid_height=2,
|
|
|
|
|
num_channels=16,
|
|
|
|
|
spp = spp_layer(input=data,
|
|
|
|
|
pyramid_height=2,
|
|
|
|
|
num_channels=16,
|
|
|
|
|
pool_type=MaxPooling())
|
|
|
|
|
|
|
|
|
|
:param name: layer name.
|
|
|
|
@ -2433,7 +2433,7 @@ def img_cmrnorm_layer(input,
|
|
|
|
|
The example usage is:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
norm = img_cmrnorm_layer(input=net, size=5)
|
|
|
|
|
|
|
|
|
|
:param name: layer name.
|
|
|
|
@ -2494,7 +2494,7 @@ def batch_norm_layer(input,
|
|
|
|
|
The example usage is:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
norm = batch_norm_layer(input=net, act=ReluActivation())
|
|
|
|
|
|
|
|
|
|
:param name: layer name.
|
|
|
|
@ -2795,11 +2795,11 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
|
|
|
|
|
"""
|
|
|
|
|
Concat sequence a with sequence b.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
Inputs:
|
|
|
|
|
- a = [a1, a2, ..., an]
|
|
|
|
|
- b = [b1, b2, ..., bn]
|
|
|
|
|
- Note that the length of a and b should be the same.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Output: [a1, b1, a2, b2, ..., an, bn]
|
|
|
|
|
|
|
|
|
|
The example usage is:
|
|
|
|
@ -3563,9 +3563,15 @@ def beam_search(step,
|
|
|
|
|
simple_rnn += last_time_step_output
|
|
|
|
|
return simple_rnn
|
|
|
|
|
|
|
|
|
|
generated_word_embedding = GeneratedInput(
|
|
|
|
|
size=target_dictionary_dim,
|
|
|
|
|
embedding_name="target_language_embedding",
|
|
|
|
|
embedding_size=word_vector_dim)
|
|
|
|
|
|
|
|
|
|
beam_gen = beam_search(name="decoder",
|
|
|
|
|
step=rnn_step,
|
|
|
|
|
input=[StaticInput(encoder_last)],
|
|
|
|
|
input=[StaticInput(encoder_last),
|
|
|
|
|
generated_word_embedding],
|
|
|
|
|
bos_id=0,
|
|
|
|
|
eos_id=1,
|
|
|
|
|
beam_size=5)
|
|
|
|
@ -3584,7 +3590,8 @@ def beam_search(step,
|
|
|
|
|
You can refer to the first parameter of recurrent_group, or
|
|
|
|
|
demo/seqToseq/seqToseq_net.py for more details.
|
|
|
|
|
:type step: callable
|
|
|
|
|
:param input: Input data for the recurrent unit
|
|
|
|
|
:param input: Input data for the recurrent unit, which should include the
|
|
|
|
|
previously generated words as a GeneratedInput object.
|
|
|
|
|
:type input: list
|
|
|
|
|
:param bos_id: Index of the start symbol in the dictionary. The start symbol
|
|
|
|
|
is a special token for NLP task, which indicates the
|
|
|
|
|