add crop_tensor_op, test=develop, test=document_preview (#19314)
add crop_tensor op. The main difference with crop is : 1. If the argument shape is a list, each element is an integer or a tensor variable with shape: [1]. This way is suitable for the case that the shape may be changed each iteration. 2. If the argument shape is a variable. Its rank must be 1. In crop op, the rank of shape must be the same as x offsets can be a list, in which each element is an integer or a tensor variavle with shape: [1].expand_as_op_1
parent
bf8367367e
commit
b38889413d
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,24 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include "paddle/fluid/operators/crop_tensor_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
crop_tensor,
|
||||
ops::CropTensorKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::CropTensorKernel<paddle::platform::CUDADeviceContext, double>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
crop_tensor_grad,
|
||||
ops::CropTensorGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::CropTensorGradKernel<paddle::platform::CUDADeviceContext, double>);
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,218 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
def crop(data, offsets, crop_shape):
|
||||
def indexOf(shape, index):
|
||||
result = []
|
||||
for dim in reversed(shape):
|
||||
result.append(index % dim)
|
||||
index = index / dim
|
||||
return result[::-1]
|
||||
|
||||
result = []
|
||||
for i, value in enumerate(data.flatten()):
|
||||
index = indexOf(data.shape, i)
|
||||
selected = True
|
||||
if len(index) == len(offsets):
|
||||
for j, offset in enumerate(offsets):
|
||||
selected = selected and index[j] >= offset and index[
|
||||
j] < crop_shape[j] + offset
|
||||
if selected:
|
||||
result.append(value)
|
||||
return np.array(result).reshape(crop_shape)
|
||||
|
||||
|
||||
class TestCropTensorOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "crop_tensor"
|
||||
self.crop_by_1D_shape = False
|
||||
self.offset_by_input = False
|
||||
self.unk_dim_idx = -1
|
||||
self.attrs = {}
|
||||
self.initTestCase()
|
||||
|
||||
if self.crop_by_1D_shape:
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.x_shape).astype("float32"),
|
||||
'Shape': np.array(self.crop_shape).astype("int32")
|
||||
}
|
||||
else:
|
||||
self.attrs['shape'] = self.crop_shape
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.x_shape).astype("float32"),
|
||||
}
|
||||
if self.offset_by_input:
|
||||
self.inputs['Offsets'] = np.array(self.offsets).astype('int32')
|
||||
else:
|
||||
self.attrs['offsets'] = self.offsets
|
||||
|
||||
if self.unk_dim_idx != -1:
|
||||
self.crop_shape[self.unk_dim_idx] = self.x_shape[self.unk_dim_idx]
|
||||
self.outputs = {
|
||||
'Out': crop(self.inputs['X'], self.offsets, self.crop_shape)
|
||||
}
|
||||
|
||||
def initTestCase(self):
|
||||
self.x_shape = (8, 8)
|
||||
self.crop_shape = [2, 2]
|
||||
self.offsets = [1, 2]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X'], 'Out', max_relative_error=0.006)
|
||||
|
||||
|
||||
class TestCase1(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (100)
|
||||
self.crop_shape = [64]
|
||||
self.offsets = [13]
|
||||
|
||||
|
||||
class TestCase2(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (12, 24)
|
||||
self.crop_shape = [-1, 8] #only the first dimension (batch) can be -1
|
||||
self.offsets = [0, 0]
|
||||
self.unk_dim_idx = 0
|
||||
|
||||
|
||||
class TestCase3(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (4, 8, 16)
|
||||
self.crop_shape = [2, 2, 3]
|
||||
self.offsets = [1, 5, 3]
|
||||
self.crop_by_1D_shape = True
|
||||
|
||||
|
||||
class TestCase4(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (8, 3, 6, 6)
|
||||
self.crop_shape = [-1, 3, 4, 4]
|
||||
self.offsets = [0, 0, 0, 0]
|
||||
self.crop_by_1D_shape = True
|
||||
self.unk_dim_idx = 0
|
||||
|
||||
|
||||
class TestCase5(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (2, 4, 5, 8, 8)
|
||||
self.crop_shape = [1, 1, 2, 4, 4]
|
||||
self.offsets = [1, 0, 0, 2, 2]
|
||||
self.offset_by_input = True
|
||||
|
||||
|
||||
class TestCase6(TestCropTensorOp):
|
||||
def initTestCase(self):
|
||||
self.x_shape = (2, 2, 4, 4, 4, 2)
|
||||
self.crop_shape = [1, 1, 4, 2, 2, 2]
|
||||
self.offsets = [0, 0, 0, 0, 0, 0]
|
||||
self.crop_by_1D_shape = True
|
||||
self.offset_by_input = True
|
||||
|
||||
|
||||
class TestCropTensorOp_attr_tensor(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "crop_tensor"
|
||||
self.mixed_type = False
|
||||
self.OffsetsTensor = False
|
||||
self.ShapeTensor = True
|
||||
self.attrs = {}
|
||||
self.initTestCase()
|
||||
|
||||
if self.ShapeTensor:
|
||||
shape_tensor = []
|
||||
for index, ele in enumerate(self.crop_shape):
|
||||
shape_tensor.append(("x" + str(index), np.ones(
|
||||
(1)).astype('int32') * ele))
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.x_shape).astype("float32"),
|
||||
'ShapeTensor': shape_tensor
|
||||
}
|
||||
if self.mixed_type:
|
||||
self.attrs['shape'] = self.shape_attr
|
||||
|
||||
if self.OffsetsTensor:
|
||||
offsets_tensor = []
|
||||
for index, ele in enumerate(self.offsets):
|
||||
offsets_tensor.append(("x" + str(index), np.ones(
|
||||
(1)).astype('int32') * ele))
|
||||
self.inputs = {
|
||||
'X': np.random.random(self.x_shape).astype("float32"),
|
||||
'OffsetsTensor': offsets_tensor
|
||||
}
|
||||
else:
|
||||
self.attrs['offsets'] = self.offsets
|
||||
|
||||
self.outputs = {
|
||||
'Out': crop(self.inputs['X'], self.offsets, self.crop_shape)
|
||||
}
|
||||
|
||||
def initTestCase(self):
|
||||
self.x_shape = (8, 8)
|
||||
self.crop_shape = (2, 2)
|
||||
self.offsets = [1, 2]
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(["X"], "Out", max_relative_error=0.006)
|
||||
|
||||
|
||||
class TestCropTensorOp_attr_tensor_case1(TestCropTensorOp_attr_tensor):
|
||||
def init_data(self):
|
||||
self.x_shape = (16, 8, 32)
|
||||
self.crop_shape = [2, 2, 3]
|
||||
self.offsets = [1, 5, 3]
|
||||
|
||||
|
||||
class TestCropTensorOp_attr_tensor_case2(TestCropTensorOp_attr_tensor):
|
||||
def init_data(self):
|
||||
self.x_shape = (4, 8, 16, 8)
|
||||
self.crop_shape = [2, 2, 3, 4]
|
||||
self.offsets = [1, 5, 3, 0]
|
||||
self.shape_attr = [-1, -1, 3, 4]
|
||||
self.mixed_type = True
|
||||
|
||||
|
||||
class TestCropTensorOp_attr_tensor_case3(TestCropTensorOp_attr_tensor):
|
||||
def init_data(self):
|
||||
self.x_shape = (16, 8, 32)
|
||||
self.crop_shape = [2, 2, 3]
|
||||
self.offsets = [1, 5, 3]
|
||||
self.ShapeTensor = False
|
||||
self.OffsetsTensor = True
|
||||
|
||||
|
||||
class TestCropTensorOp_attr_tensor_case4(TestCropTensorOp_attr_tensor):
|
||||
def init_data(self):
|
||||
self.x_shape = (16, 8, 32)
|
||||
self.crop_shape = [2, 2, 3]
|
||||
self.offsets = [1, 5, 3]
|
||||
self.OffsetsTensor = True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue