|
|
|
@ -313,22 +313,16 @@ sync = False
|
|
|
|
|
batch_num = 5
|
|
|
|
|
|
|
|
|
|
np.random.seed = 90
|
|
|
|
|
src_word_np = np.random.randint(
|
|
|
|
|
1,
|
|
|
|
|
ModelHyperParams.src_vocab_size - 1,
|
|
|
|
|
size=(TrainTaskConfig.batch_size, seq_len, 1),
|
|
|
|
|
dtype='int64')
|
|
|
|
|
src_word_np = np.arange(1, TrainTaskConfig.batch_size * seq_len + 1).reshape(
|
|
|
|
|
[TrainTaskConfig.batch_size, seq_len, 1]).astype('int64')
|
|
|
|
|
src_pos_np = np.random.randint(
|
|
|
|
|
1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
|
|
|
|
|
src_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
|
|
|
|
|
ModelHyperParams.n_head, seq_len,
|
|
|
|
|
seq_len).astype('float32')
|
|
|
|
|
|
|
|
|
|
trg_word_np = np.random.randint(
|
|
|
|
|
1,
|
|
|
|
|
ModelHyperParams.src_vocab_size - 1,
|
|
|
|
|
size=(TrainTaskConfig.batch_size, seq_len, 1),
|
|
|
|
|
dtype='int64')
|
|
|
|
|
trg_word_np = np.arange(1, TrainTaskConfig.batch_size * seq_len + 1).reshape(
|
|
|
|
|
[TrainTaskConfig.batch_size, seq_len, 1]).astype('int64')
|
|
|
|
|
trg_pos_np = np.random.randint(
|
|
|
|
|
1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
|
|
|
|
|
trg_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
|
|
|
|
|