|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
@ -14,8 +14,8 @@
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
import math
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_latest_set(num):
|
|
|
|
@ -37,40 +37,36 @@ class CodeTable(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def hsigmoid(x, w, ids, bias, num_classes):
|
|
|
|
|
# code length =
|
|
|
|
|
# initialize pre out with dims={batch_size, code_length}
|
|
|
|
|
global pre_output
|
|
|
|
|
batch_size = x.shape[0]
|
|
|
|
|
code_length = find_latest_set(num_classes - 1)
|
|
|
|
|
code_table = [0 for _ in range(code_length)]
|
|
|
|
|
pre_output = np.zeros((batch_size, code_length))
|
|
|
|
|
pre_sum = np.zeros((batch_size, 1))
|
|
|
|
|
out = np.zeros((batch_size, 1)).astype("float32")
|
|
|
|
|
# pre_out += code(bias)
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
code_table = CodeTable(num_classes, ids[i])
|
|
|
|
|
length = code_table.get_length()
|
|
|
|
|
for j in xrange(length):
|
|
|
|
|
for j in range(length):
|
|
|
|
|
idx = code_table.cal_index(j)
|
|
|
|
|
pre_output[i][j] += bias[0][idx]
|
|
|
|
|
# pre_out += code(w) * x
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
for j in xrange(batch_size):
|
|
|
|
|
code_table = CodeTable(num_classes, ids[j])
|
|
|
|
|
length = code_table.get_length()
|
|
|
|
|
for k in xrange(length):
|
|
|
|
|
idx = code_table.cal_index(k)
|
|
|
|
|
sum = 0.0
|
|
|
|
|
for l in xrange(x.shape[1]):
|
|
|
|
|
sum += w[i][idx][l] * x[j][l]
|
|
|
|
|
pre_output[j][k] += sum
|
|
|
|
|
for j in range(batch_size):
|
|
|
|
|
code_table = CodeTable(num_classes, ids[j])
|
|
|
|
|
length = code_table.get_length()
|
|
|
|
|
for k in range(length):
|
|
|
|
|
idx = code_table.cal_index(k)
|
|
|
|
|
sum = 0.0
|
|
|
|
|
for l in range(x.shape[1]):
|
|
|
|
|
sum += w[idx][l] * x[j][l]
|
|
|
|
|
pre_output[j][k] += sum
|
|
|
|
|
# clip[-40.0, 40.0]
|
|
|
|
|
np.clip(pre_output, -40.0, 40.0)
|
|
|
|
|
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
code_table = CodeTable(num_classes, ids[i])
|
|
|
|
|
length = code_table.get_length()
|
|
|
|
|
sum = 0.0
|
|
|
|
|
for j in xrange(length):
|
|
|
|
|
for j in range(length):
|
|
|
|
|
if code_table.cal_bit(j):
|
|
|
|
|
sum += pre_output[i][j]
|
|
|
|
|
out[i] = -1.0 * sum
|
|
|
|
@ -85,24 +81,23 @@ def hsigmoid(x, w, ids, bias, num_classes):
|
|
|
|
|
class TestHSigmoidOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "hierarchical_sigmoid"
|
|
|
|
|
num_classes = 6
|
|
|
|
|
embded_size = 10
|
|
|
|
|
batch_size = 5
|
|
|
|
|
num_classes = 4
|
|
|
|
|
embded_size = 1
|
|
|
|
|
batch_size = 1
|
|
|
|
|
x = np.random.random((batch_size, embded_size)).astype("float32")
|
|
|
|
|
w = np.random.random(
|
|
|
|
|
(batch_size, num_classes - 1, embded_size)).astype("float32")
|
|
|
|
|
w = np.random.random((num_classes - 1, embded_size)).astype("float32")
|
|
|
|
|
ids = np.random.randint(0, num_classes, batch_size)
|
|
|
|
|
bias = np.random.random((1, num_classes - 1)).astype("float32")
|
|
|
|
|
self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias}
|
|
|
|
|
self.attrs = {'num_classes': num_classes}
|
|
|
|
|
self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias}
|
|
|
|
|
out = hsigmoid(x, w, ids, bias, num_classes)
|
|
|
|
|
self.outputs = {'Out': out}
|
|
|
|
|
self.outputs = {'PreOut': pre_output, 'Out': out}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['X', 'W', 'Bias'], 'Out', no_grad_set=set('Ids'))
|
|
|
|
|
self.check_grad(['Bias', 'X', 'W'], 'Out', no_grad_set=set('Ids'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|