|
|
|
@ -26,18 +26,20 @@ namespace paddle {
|
|
|
|
|
namespace inference {
|
|
|
|
|
namespace tensorrt {
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::Build(const DescType& paddle_model) {
|
|
|
|
|
void TensorRTEngine::Build(const DescType &paddle_model) {
|
|
|
|
|
PADDLE_ENFORCE(false, "not implemented");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::Execute(int batch_size) {
|
|
|
|
|
std::vector<void*> buffers;
|
|
|
|
|
for (auto& buf : buffers_) {
|
|
|
|
|
batch_size_ = batch_size;
|
|
|
|
|
std::vector<void *> buffers;
|
|
|
|
|
for (auto &buf : buffers_) {
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated");
|
|
|
|
|
PADDLE_ENFORCE_GT(buf.max_size, 0);
|
|
|
|
|
PADDLE_ENFORCE(buf.device == DeviceType::GPU);
|
|
|
|
|
buffers.push_back(buf.buffer);
|
|
|
|
|
}
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(stream_);
|
|
|
|
|
infer_context_->enqueue(batch_size, buffers.data(), *stream_, nullptr);
|
|
|
|
|
cudaStreamSynchronize(*stream_);
|
|
|
|
|
}
|
|
|
|
@ -45,7 +47,7 @@ void TensorRTEngine::Execute(int batch_size) {
|
|
|
|
|
TensorRTEngine::~TensorRTEngine() {
|
|
|
|
|
cudaStreamSynchronize(*stream_);
|
|
|
|
|
// clean buffer
|
|
|
|
|
for (auto& buf : buffers_) {
|
|
|
|
|
for (auto &buf : buffers_) {
|
|
|
|
|
if (buf.device == DeviceType::GPU && buf.buffer != nullptr) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
|
|
|
|
|
buf.buffer = nullptr;
|
|
|
|
@ -70,32 +72,37 @@ void TensorRTEngine::FreezeNetwork() {
|
|
|
|
|
|
|
|
|
|
// allocate GPU buffers.
|
|
|
|
|
buffers_.resize(buffer_sizes_.size());
|
|
|
|
|
for (auto& item : buffer_sizes_) {
|
|
|
|
|
for (auto &item : buffer_sizes_) {
|
|
|
|
|
// The output buffers are not set in the network building phrase, need to
|
|
|
|
|
// infer from the TesorRT network.
|
|
|
|
|
if (item.second == 0) {
|
|
|
|
|
auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
|
|
|
|
|
auto dims = infer_engine_->getBindingDimensions(slot_offset);
|
|
|
|
|
item.second = kDataTypeSize[static_cast<int>(
|
|
|
|
|
infer_engine_->getBindingDataType(slot_offset))] *
|
|
|
|
|
analysis::AccuDims(dims.d, dims.nbDims);
|
|
|
|
|
PADDLE_ENFORCE_GT(item.second, 0);
|
|
|
|
|
}
|
|
|
|
|
auto& buf = buffer(item.first);
|
|
|
|
|
|
|
|
|
|
auto &buf = buffer(item.first);
|
|
|
|
|
buf.max_size = item.second * max_batch_;
|
|
|
|
|
CHECK(buf.buffer == nullptr); // buffer should be allocated only once.
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second));
|
|
|
|
|
VLOG(4) << "buffer malloc " << item.first << " " << item.second << " "
|
|
|
|
|
<< buf.buffer;
|
|
|
|
|
buf.size = buf.max_size = item.second;
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, buf.max_size));
|
|
|
|
|
PADDLE_ENFORCE_LE(buf.max_size, 1 << 30); // 10G
|
|
|
|
|
// buf.size will changed in the runtime.
|
|
|
|
|
buf.size = 0;
|
|
|
|
|
buf.device = DeviceType::GPU;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
|
|
|
|
|
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
|
|
|
|
|
nvinfer1::DataType dtype,
|
|
|
|
|
const nvinfer1::Dims& dims) {
|
|
|
|
|
const nvinfer1::Dims &dims) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
|
|
|
|
|
name);
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
|
|
|
|
|
auto* input = infer_network_->addInput(name.c_str(), dtype, dims);
|
|
|
|
|
auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
|
|
|
|
|
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
|
|
|
|
|
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
|
|
|
|
|
analysis::AccuDims(dims.d, dims.nbDims);
|
|
|
|
@ -104,12 +111,12 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
|
|
|
|
|
return input;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
|
|
|
|
|
const std::string& name) {
|
|
|
|
|
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
|
|
|
|
|
const std::string &name) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
|
|
|
|
|
name);
|
|
|
|
|
|
|
|
|
|
auto* output = layer->getOutput(offset);
|
|
|
|
|
auto *output = layer->getOutput(offset);
|
|
|
|
|
SetITensor(name, output);
|
|
|
|
|
PADDLE_ENFORCE(output != nullptr);
|
|
|
|
|
output->setName(name.c_str());
|
|
|
|
@ -121,11 +128,11 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
|
|
|
|
|
buffer_sizes_[name] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::DeclareOutput(const std::string& name) {
|
|
|
|
|
void TensorRTEngine::DeclareOutput(const std::string &name) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
|
|
|
|
|
name);
|
|
|
|
|
|
|
|
|
|
auto* output = TensorRTEngine::GetITensor(name);
|
|
|
|
|
auto *output = TensorRTEngine::GetITensor(name);
|
|
|
|
|
PADDLE_ENFORCE(output != nullptr);
|
|
|
|
|
output->setName(name.c_str());
|
|
|
|
|
PADDLE_ENFORCE(!output->isNetworkInput());
|
|
|
|
@ -135,38 +142,45 @@ void TensorRTEngine::DeclareOutput(const std::string& name) {
|
|
|
|
|
buffer_sizes_[name] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
|
|
|
|
|
void *TensorRTEngine::GetOutputInGPU(const std::string &name) {
|
|
|
|
|
return buffer(name).buffer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::GetOutputInGPU(const std::string& name, void* dst,
|
|
|
|
|
void TensorRTEngine::GetOutputInGPU(const std::string &name, void *dst,
|
|
|
|
|
size_t max_size) {
|
|
|
|
|
// determine data size
|
|
|
|
|
auto it = buffer_sizes_.find(name);
|
|
|
|
|
PADDLE_ENFORCE(it != buffer_sizes_.end());
|
|
|
|
|
PADDLE_ENFORCE_GT(it->second, 0);
|
|
|
|
|
PADDLE_ENFORCE_GE(max_size, it->second);
|
|
|
|
|
auto& buf = buffer(name);
|
|
|
|
|
auto &buf = buffer(name);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
|
|
|
|
|
PADDLE_ENFORCE_EQ(cudaMemcpyAsync(dst, buf.buffer, it->second,
|
|
|
|
|
cudaMemcpyDeviceToDevice, *stream_),
|
|
|
|
|
0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
|
|
|
|
|
void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst,
|
|
|
|
|
size_t max_size) {
|
|
|
|
|
VLOG(4) << "get output in cpu";
|
|
|
|
|
auto &buf = buffer(name);
|
|
|
|
|
|
|
|
|
|
// Update needed buffer size.
|
|
|
|
|
auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
|
|
|
|
|
auto dims = infer_engine_->getBindingDimensions(slot_offset);
|
|
|
|
|
buf.size = kDataTypeSize[static_cast<int>(
|
|
|
|
|
infer_engine_->getBindingDataType(slot_offset))] *
|
|
|
|
|
analysis::AccuDims(dims.d, dims.nbDims);
|
|
|
|
|
PADDLE_ENFORCE_LE(buf.size, buf.max_size);
|
|
|
|
|
// determine data size
|
|
|
|
|
auto it = buffer_sizes_.find(name);
|
|
|
|
|
PADDLE_ENFORCE(it != buffer_sizes_.end());
|
|
|
|
|
PADDLE_ENFORCE_GT(it->second, 0);
|
|
|
|
|
PADDLE_ENFORCE_GE(max_size, it->second);
|
|
|
|
|
auto& buf = buffer(name);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buf.buffer, it->second,
|
|
|
|
|
cudaMemcpyDeviceToHost, *stream_));
|
|
|
|
|
// DEBUG
|
|
|
|
|
memset(dst, 0, buf.size);
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
0, cudaMemcpy(dst, buf.buffer, buf.size, cudaMemcpyDeviceToHost));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Buffer& TensorRTEngine::buffer(const std::string& name) {
|
|
|
|
|
Buffer &TensorRTEngine::buffer(const std::string &name) {
|
|
|
|
|
PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
|
|
|
|
|
auto it = buffer_sizes_.find(name);
|
|
|
|
|
PADDLE_ENFORCE(it != buffer_sizes_.end());
|
|
|
|
@ -174,19 +188,23 @@ Buffer& TensorRTEngine::buffer(const std::string& name) {
|
|
|
|
|
return buffers_[slot_offset];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::SetInputFromCPU(const std::string& name, const void* data,
|
|
|
|
|
void TensorRTEngine::SetInputFromCPU(const std::string &name, const void *data,
|
|
|
|
|
size_t size) {
|
|
|
|
|
auto& buf = buffer(name);
|
|
|
|
|
auto &buf = buffer(name);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(buf.buffer);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(data);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(stream_);
|
|
|
|
|
PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
|
|
|
|
|
PADDLE_ENFORCE(buf.device == DeviceType::GPU);
|
|
|
|
|
buf.size = size;
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
|
|
|
|
|
cudaMemcpyHostToDevice, *stream_));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::SetInputFromGPU(const std::string& name, const void* data,
|
|
|
|
|
void TensorRTEngine::SetInputFromGPU(const std::string &name, const void *data,
|
|
|
|
|
size_t size) {
|
|
|
|
|
auto& buf = buffer(name);
|
|
|
|
|
auto &buf = buffer(name);
|
|
|
|
|
buf.size = size;
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(buf.buffer);
|
|
|
|
|
PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
|
|
|
|
|
PADDLE_ENFORCE(buf.device == DeviceType::GPU);
|
|
|
|
@ -194,15 +212,15 @@ void TensorRTEngine::SetInputFromGPU(const std::string& name, const void* data,
|
|
|
|
|
cudaMemcpyDeviceToDevice, *stream_));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void TensorRTEngine::SetITensor(const std::string& name,
|
|
|
|
|
nvinfer1::ITensor* tensor) {
|
|
|
|
|
void TensorRTEngine::SetITensor(const std::string &name,
|
|
|
|
|
nvinfer1::ITensor *tensor) {
|
|
|
|
|
PADDLE_ENFORCE(tensor != nullptr);
|
|
|
|
|
PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
|
|
|
|
|
name);
|
|
|
|
|
itensor_map_[name] = tensor;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) {
|
|
|
|
|
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
|
|
|
|
|
PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
|
|
|
|
|
return itensor_map_[name];
|
|
|
|
|
}
|
|
|
|
|