Merge remote-tracking branch 'upstream/develop' into mklso

revert-3824-remove_grad_op_type
tensor-tang 8 years ago
commit b430c238d2

@ -37,8 +37,8 @@ before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install rarfile nltk==3.2.2 scipy==0.19.0 recordio matplotlib Pillow
- pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter

@ -0,0 +1,146 @@
## Auto Gradient Checker Design
## Backgraound
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes
1The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)

@ -17,12 +17,10 @@ def main():
# network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x,
param_attr=paddle.attr.Param(
name='w', learning_rate=1e-3),
param_attr=paddle.attr.Param(name='w'),
size=1,
act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param(
name='b', learning_rate=1e-3))
bias_attr=paddle.attr.Param(name='b'))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.mse_cost(input=y_predict, label=y)

@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
config->m->getConfig(), pserverSpec, useEtcd));
return updater;
#else
throw UnsupportError();
throw UnsupportError("not compiled with WITH_GOLANG");
#endif
}

@ -36,8 +36,8 @@ py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PROJ_ROOT}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PROJ_ROOT}/python/paddle/v2/framework/proto/
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
@ -48,9 +48,12 @@ if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mul_op
rowwise_add_op
sigmoid_op
softmax_op
mean_op
cross_entropy_op
recurrent_op

@ -30,6 +30,8 @@ using DeviceContext = platform::DeviceContext;
class EmptyOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(EmptyOp, OperatorBase)
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
};

@ -20,7 +20,6 @@ limitations under the License. */
#include "paddle/framework/dim.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/variant.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace framework {

@ -19,45 +19,44 @@ permissions and limitations under the License. */
namespace paddle {
namespace framework {
class OpRegistry;
using VarIndexMap = std::unordered_map<std::string, int>;
typedef std::vector<int> Ints;
enum class OpArgType { IN, OUT };
static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
const Ints* AttrFormat(const AttributeMap& attrs, const std::string& key) {
return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
}
static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpArgType& type) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
Ints* AttrFormat(AttributeMap& attrs, const std::string& key) {
return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
}
static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
const OpArgType& src_type, const OpArgType& dst_type,
static void TransOpArg(const OperatorBase* src_op,
std::vector<std::string>& grad_inputs,
std::vector<std::string>& grad_outputs,
AttributeMap& grad_attrs,
std::unordered_map<std::string, int>& grad_idxs,
const std::string& src_type, const std::string& dst_type,
int& idx, bool is_grad) {
const std::vector<std::string>& src_inout =
src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_;
const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
(src_type == "input_format") ? src_op->inputs_ : src_op->outputs_;
const std::vector<int>* src_format = AttrFormat(src_op->Attrs(), src_type);
std::vector<std::string>& dst_inout =
dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_;
std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
(dst_type == "input_format") ? grad_inputs : grad_outputs;
std::vector<int>* dst_format = AttrFormat(grad_attrs, dst_type);
const OpProto& proto = OpRegistry::protos().at(src_op->type_);
const auto& src_arg_list =
src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
(src_type == "input_format") ? proto.inputs() : proto.outputs();
for (const auto& arg : src_arg_list) {
std::string src_name = arg.name();
std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++;
grad_idxs[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
@ -76,26 +75,42 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
}
OperatorBase* BuildGradOp(const OperatorBase* op) {
std::string grad_op_type = OpRegistry::grad_ops().at(op->type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->attrs_ = op->attrs_;
grad_op->attrs_.erase("input_format");
grad_op->attrs_.erase("output_format");
if (GetOpFormat(op, OpArgType::IN) != nullptr) {
grad_op->attrs_["output_format"] = std::vector<int>({0});
const std::string& grad_op_type = OpRegistry::grad_ops().at(op->Type());
AttributeMap grad_attrs(op->Attrs());
grad_attrs.erase("input_format");
grad_attrs.erase("output_format");
if (op->Attrs().count("input_format") > 0) {
grad_attrs["output_format"] = std::vector<int>({0});
}
if (GetOpFormat(op, OpArgType::IN) != nullptr ||
GetOpFormat(op, OpArgType::OUT) != nullptr) {
grad_op->attrs_["input_format"] = std::vector<int>({0});
if (op->Attrs().count("input_format") > 0 ||
op->Attrs().count("output_format") > 0) {
grad_attrs["input_format"] = std::vector<int>({0});
}
grad_op->in_out_idxs_.reset(new VarIndexMap());
std::vector<std::string> grad_inputs, grad_outputs;
using VarIndexMap = std::unordered_map<std::string, int>;
VarIndexMap* grad_idxs = new VarIndexMap;
int in_idx = 0;
int out_idx = 0;
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"input_format", "input_format", in_idx, false); // I
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"output_format", "input_format", in_idx, false); // G
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"output_format", "input_format", in_idx, true); // OG
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"input_format", "output_format", out_idx, true); // IG
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->inputs_ = grad_inputs;
grad_op->outputs_ = grad_outputs;
grad_op->attrs_ = grad_attrs;
grad_op->in_out_idxs_.reset(grad_idxs);
return grad_op;
}

@ -10,6 +10,8 @@ namespace framework {
class NOP : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(NOP, OperatorBase)
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}

File diff suppressed because it is too large Load Diff

@ -7,6 +7,8 @@ namespace paddle {
namespace framework {
class CosineOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(CosineOp, OperatorBase)
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
void InferShape(const Scope& scope) const override {}
@ -27,6 +29,8 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(MyTestOp, OperatorBase)
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}

@ -63,6 +63,17 @@ class ExecutionContext;
*/
class OperatorBase {
public:
OperatorBase() {} // TODO(yi): This constructor is to be removed.
OperatorBase(const std::string& type, const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
const AttributeMap& attrs,
std::unordered_map<std::string, int>* in_out_idxs)
: type_(type),
inputs_(inputs),
outputs_(outputs),
attrs_(attrs),
in_out_idxs_(in_out_idxs) {}
virtual ~OperatorBase() {}
template <typename T>
@ -95,16 +106,24 @@ class OperatorBase {
//! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables.
//! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Inputs(const std::string& name) const;
//! Get a output with argument's name described in `op_proto`
const std::string& Output(const std::string& name) const;
//! Get an output which has multiple variables.
//! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Outputs(const std::string& name) const;
const std::string Type() const { return type_; }
const std::vector<std::string> Inputs() const { return inputs_; }
const std::vector<std::string> Outputs() const { return outputs_; }
const AttributeMap& Attrs() const { return attrs_; }
const std::unordered_map<std::string, int>* InOutIdx() const {
return in_out_idxs_.get();
}
public:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
@ -281,6 +300,14 @@ class OpKernel {
class OperatorWithKernel : public OperatorBase {
public:
OperatorWithKernel() {} // TODO(yi): This constructor is to be removed.
OperatorWithKernel(const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
const AttributeMap& attrs,
std::unordered_map<std::string, int>* in_out_idxs)
: OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {}
struct OpKernelKey {
platform::Place place_;
@ -330,5 +357,15 @@ class OperatorWithKernel : public OperatorBase {
virtual void InferShape(const InferShapeContext& ctx) const = 0;
};
#define DEFINE_OPERATOR_CTOR(Class, ParentClass) \
public: \
Class() { /* TODO(yi): This constructor is to be removed. */ \
} \
Class(const std::string& type, const std::vector<std::string>& inputs, \
const std::vector<std::string>& outputs, \
const ::paddle::framework::AttributeMap& attrs, \
std::unordered_map<std::string, int>* in_out_idxs) \
: ParentClass(type, inputs, outputs, attrs, in_out_idxs) {}
} // namespace framework
} // namespace paddle

@ -23,6 +23,8 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(OpWithoutKernelTest, OperatorBase)
void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
@ -97,6 +99,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel {
public:
DEFINE_OPERATOR_CTOR(OpWithKernelTest, OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {}
};
@ -116,6 +120,8 @@ class CPUKernelTest : public OpKernel {
// multiple inputs test
class OperatorMultiInputsTest : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(OperatorMultiInputsTest, OperatorBase)
void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,

@ -30,16 +30,15 @@ limitations under the License. */
namespace py = pybind11;
USE_OP(add_two);
USE_OP_CPU(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc);
USE_OP(sgd);
USE_CPU_OP(onehot_cross_entropy);
USE_NO_GRAD_OP(sgd);
USE_OP(mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
USE_OP(fill_zeros_like);
USE_OP_WITHOUT_KERNEL(recurrent_op);
USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random);
USE_OP(uniform_random);

@ -38,10 +38,11 @@ if(WITH_GPU)
add_simple_unittest(RowConvOpTest)
add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest)
add_simple_unittest(DepthwiseConvOpTest)
endif()
add_simple_unittest(ConvOpTest)
add_simple_unittest(Im2ColTest)
add_simple_unittest(GemmConvOpTest)
endif()
add_style_check_target(paddle_function ${h_files})

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,37 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace paddle {
#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConv, Forward) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "DepthwiseConv-GPU", forward);
}
TEST(DepthwiseConv, BackwardInput) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "DepthwiseConvGradInput-GPU", backward_input);
}
TEST(DepthwiseConv, BackwardFilter) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "DepthwiseConvGradFilter-GPU", backward_filter);
}
#endif
} // namespace paddle

@ -0,0 +1,50 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace paddle {
TEST(GemmConv, NaiveConv) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
}
#ifndef PADDLE_ONLY_CPU
TEST(GemmConv, Forward) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
}
TEST(GemmConv, BackwardInput) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
}
TEST(GemmConv, BackwardFilter) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
}
#endif
} // namespace paddle

@ -196,30 +196,30 @@ public:
CHECK_EQ(status, nnp_status_success);
}
} else {
for (size_t g = 0; g < groups_; g++) {
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
nnp_status status =
nnp_convolution_output(algorithm_,
batchSize,
inputChannels / groups_,
outputChannels / groups_,
inputSize,
padding,
kernelSize,
inputData + inputOffset * g,
filterData + filterOffset * g,
nullptr, /* bias */
outputData + outputOffset * g,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
}
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
// TODO(hedaoyuan): There has some bug when batchSize > 1 and groups_ > 1.
CHECK_EQ(groups_, static_cast<size_t>(1));
nnp_status status = nnp_convolution_output(algorithm_,
batchSize,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
inputData,
filterData,
nullptr, /* bias */
outputData,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
}
}

@ -13,87 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/function/Function.h"
#include "paddle/function/FunctionTest.h"
DEFINE_string(algo,
"auto",
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK.");
#include "paddle/function/ConvOpTest.h"
namespace paddle {
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
if (algo == "direct" && filterSize != 1) continue; \
if (algo == "direct" && batchSize != 1) continue; \
if (algo == "wt8x8" && filterSize != 3) continue; \
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
// if batchSize > 1 NNPACKConv only supports stride = 1
if (batchSize > 1 && stride > 1) break;
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
IS_NNPACK_SUPPORT(algo, filterSize, stride);
LOG(INFO) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));
TensorShape shape0{
batchSize, inputChannels, inputSize, inputSize};
TensorShape shape1{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape shape2{
batchSize, outputChannels, outputSize, outputSize};
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
test.run();
}
}
}
}
}
}
}
}
};
TEST(NNPACK, Forward) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"GemmConv-CPU", "NNPACKConv-CPU", forward);
}
TEST(Convolution, NNPACK) {
// NNPACK only supports stride = 1
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
TEST(NNPACK, Depthwise) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"GemmConv-CPU", "NNPACKConv-CPU", forward);
}
} // namespace paddle

@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax)
private:
MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_;
MatrixPtr one_;
public:
Error __must_check forward(Argument& act) {
@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) {
1,
/* trans */ false,
useGpu(act.deviceId));
if (!one_ || one_->getWidth() != outputG->getWidth()) {
Matrix::resizeOrCreate(one_,
1,
outputG->getWidth(),
/* trans */ false,
useGpu(act.deviceId));
one_->one();
}
sftMaxDot_->dotMul(*outputG, *outputV);
sftMaxSum_->colMerge(*sftMaxDot_);

@ -61,9 +61,6 @@ op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu)
op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS op_desc tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)

@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class AddOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(AddOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 2);
@ -47,6 +48,7 @@ The equation is: Out = X + Y
};
class AddOpGrad : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(AddOpGrad, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {}
};

@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(OnehotCrossEntropyOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 2,
@ -38,6 +39,8 @@ class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
};
class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(OnehotCrossEntropyGradientOp,
framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save