|
|
|
@ -15,43 +15,53 @@ class TestConv2dOp(OpTest):
|
|
|
|
|
filter_width = 3
|
|
|
|
|
stride = 1
|
|
|
|
|
padding = 0
|
|
|
|
|
groups = 3
|
|
|
|
|
output_height = (input_height - filter_height + 2 * padding
|
|
|
|
|
) / stride + 1
|
|
|
|
|
output_width = (input_width - filter_width + 2 * padding) / stride + 1
|
|
|
|
|
input = np.random.random((batch_size, input_channels, input_height,
|
|
|
|
|
input_width)).astype("float32")
|
|
|
|
|
|
|
|
|
|
filter = np.random.random(
|
|
|
|
|
(output_channels, input_channels, filter_height,
|
|
|
|
|
(output_channels, input_channels / groups, filter_height,
|
|
|
|
|
filter_width)).astype("float32")
|
|
|
|
|
output = np.ndarray(
|
|
|
|
|
(batch_size, output_channels, output_height, output_width))
|
|
|
|
|
|
|
|
|
|
self.inputs = {'Input': input, 'Filter': filter}
|
|
|
|
|
self.attrs = {'strides': [1, 1], 'paddings': [0, 0]}
|
|
|
|
|
self.attrs = {'strides': [1, 1], 'paddings': [0, 0], 'groups': groups}
|
|
|
|
|
|
|
|
|
|
output_group_channels = output_channels / groups
|
|
|
|
|
input_group_channels = input_channels / groups
|
|
|
|
|
for batchid in xrange(batch_size):
|
|
|
|
|
for channelid in xrange(output_channels):
|
|
|
|
|
for rowid in xrange(output_height):
|
|
|
|
|
for colid in xrange(output_width):
|
|
|
|
|
start_h = (rowid * stride) - padding
|
|
|
|
|
start_w = (colid * stride) - padding
|
|
|
|
|
output_value = 0.0
|
|
|
|
|
for inchannelid in xrange(input_channels):
|
|
|
|
|
for frowid in xrange(filter_height):
|
|
|
|
|
for fcolid in xrange(filter_width):
|
|
|
|
|
input_value = 0.0
|
|
|
|
|
inrowid = start_h + frowid
|
|
|
|
|
incolid = start_w + fcolid
|
|
|
|
|
if ((inrowid >= 0 and
|
|
|
|
|
inrowid < input_height) and
|
|
|
|
|
(incolid >= 0 and
|
|
|
|
|
incolid < input_width)):
|
|
|
|
|
input_value = input[batchid][
|
|
|
|
|
inchannelid][inrowid][incolid]
|
|
|
|
|
filter_value = filter[channelid][
|
|
|
|
|
inchannelid][frowid][fcolid]
|
|
|
|
|
output_value += input_value * filter_value
|
|
|
|
|
output[batchid][channelid][rowid][colid] = output_value
|
|
|
|
|
for group in xrange(groups):
|
|
|
|
|
for outchannelid in range(group * output_group_channels,
|
|
|
|
|
(group + 1) * output_group_channels):
|
|
|
|
|
for rowid in xrange(output_height):
|
|
|
|
|
for colid in xrange(output_width):
|
|
|
|
|
start_h = (rowid * stride) - padding
|
|
|
|
|
start_w = (colid * stride) - padding
|
|
|
|
|
output_value = 0.0
|
|
|
|
|
for inchannelid in range(
|
|
|
|
|
group * input_group_channels,
|
|
|
|
|
(group + 1) * input_group_channels):
|
|
|
|
|
for frowid in xrange(filter_height):
|
|
|
|
|
for fcolid in xrange(filter_width):
|
|
|
|
|
input_value = 0.0
|
|
|
|
|
inrowid = start_h + frowid
|
|
|
|
|
incolid = start_w + fcolid
|
|
|
|
|
if ((inrowid >= 0 and
|
|
|
|
|
inrowid < input_height) and
|
|
|
|
|
(incolid >= 0 and
|
|
|
|
|
incolid < input_width)):
|
|
|
|
|
input_value = input[batchid][
|
|
|
|
|
inchannelid][inrowid][incolid]
|
|
|
|
|
filter_value = filter[outchannelid][
|
|
|
|
|
inchannelid % input_group_channels][
|
|
|
|
|
frowid][fcolid]
|
|
|
|
|
output_value += input_value * filter_value
|
|
|
|
|
output[batchid][outchannelid][rowid][
|
|
|
|
|
colid] = output_value
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
|
|