[NPU] add npu kernel for sgd (#31639)
parent
57220f594d
commit
b541ca8795
@ -0,0 +1,62 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
#include "paddle/fluid/operators/optimizers/sgd_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SGDNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* learning_rate = ctx.Input<framework::LoDTensor>("LearningRate");
|
||||
auto* param_var = ctx.Input<framework::LoDTensor>("Param");
|
||||
auto* grad_var = ctx.Input<framework::LoDTensor>("Grad");
|
||||
auto* param_out = ctx.Output<framework::LoDTensor>("ParamOut");
|
||||
|
||||
param_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner =
|
||||
NpuOpRunner("ApplyGradientDescent",
|
||||
{*param_var, *learning_rate, *grad_var}, {*param_out}, {});
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
runner.Run(stream);
|
||||
|
||||
// NOTE(zhiqiu): ApplyGradientDescent updates params inplace, so
|
||||
// if param and param_out is not same, we need to do copy.
|
||||
if (param_out->data<T>() != param_var->data<T>()) {
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
|
||||
framework::TensorCopySync(*param_var, ctx.GetPlace(), param_out);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
sgd, ops::SGDNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::SGDNPUKernel<paddle::platform::NPUDeviceContext, double>,
|
||||
ops::SGDNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
@ -0,0 +1,119 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSGD(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.op_type = "sgd"
|
||||
self.conf()
|
||||
w = np.random.random((self.h, self.w)).astype("float32")
|
||||
g = np.random.random((self.h, self.w)).astype("float32")
|
||||
lr = np.array([0.1]).astype("float32")
|
||||
|
||||
self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
|
||||
self.outputs = {'ParamOut': w - lr * g}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def conf(self):
|
||||
self.h = 12
|
||||
self.w = 15
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
sum = paddle.add(a, b)
|
||||
z = paddle.pow(sum, 2.0)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=z, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue