Merge pull request #4285 from kuke/margin_rank_loss_op_dev
Add margin rank loss operatorrevert-4814-Add_sequence_project_op
commit
b56cbd307d
@ -0,0 +1,124 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/margin_rank_loss_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class MarginRankLossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
// input check
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
auto x1_dims = ctx->GetInputDim("X1");
|
||||
auto x2_dims = ctx->GetInputDim("X2");
|
||||
PADDLE_ENFORCE(
|
||||
(label_dims == x1_dims) && (x1_dims == x2_dims) &&
|
||||
(label_dims.size() == 2) && (label_dims[1] == 1),
|
||||
"All inputs must be 2-D tensor with shape [batch_size x 1].");
|
||||
ctx->SetOutputDim("Activated", label_dims);
|
||||
ctx->SetOutputDim("Out", label_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
MarginRankLossOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X1",
|
||||
"(2-D tensor with shape [batch_size x 1]) The score for "
|
||||
"one item X1 to be ranked, from pairwise ranking model.");
|
||||
AddInput("X2",
|
||||
"(2-D tensor with shape [batch_size x 1]) The score for "
|
||||
"another item X2 to be ranked, from pairwise ranking model.");
|
||||
AddInput("Label",
|
||||
"(2-D tensor with shape [batch_size x 1]) "
|
||||
"The label indicating X1 ranked higher than X2 or not, "
|
||||
"can only be +1 or -1.");
|
||||
AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
|
||||
.SetDefault(static_cast<T>(0));
|
||||
AddOutput("Activated",
|
||||
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
|
||||
"to indicate whether each element of Output(Out) is activated.")
|
||||
.AsIntermediate();
|
||||
AddOutput("Out",
|
||||
"(2-D tensor with shape [batch_size x 1]) "
|
||||
"The output loss of MarginRankLoss operator.");
|
||||
AddComment(R"DOC(
|
||||
|
||||
MarginRankLoss operator measures the loss given a pair of training sample
|
||||
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
|
||||
indicating X1 is ranked higher than `X2`, otherwise `Label = -1`. The loss
|
||||
turns out
|
||||
|
||||
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
|
||||
|
||||
The attribute `margin` involved here helps make the predictions more robust.
|
||||
Denote the item ranked higher as the positive sample, otherwise the negative
|
||||
sample. If the score of the two samples satisfies
|
||||
|
||||
positive sample - negative sample < margin,
|
||||
|
||||
the pair of samples will contribute to the final loss, which will backpropogate
|
||||
and train the ranking model to enlarge the difference of the two score.
|
||||
|
||||
For batch input with size `batch_size`, `X1`, `X2` and `Label`
|
||||
all have the same shape [batch_size x 1].
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class MarginRankLossGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) shouldn't be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Activated"),
|
||||
"Intermediate(Activated) shouldn't be null.");
|
||||
auto dims = ctx->GetInputDim("Label");
|
||||
ctx->SetOutputDim(framework::GradVarName("X1"), dims);
|
||||
ctx->SetOutputDim(framework::GradVarName("X2"), dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
|
||||
ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
|
||||
ops::MarginRankLossGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
margin_rank_loss,
|
||||
ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
margin_rank_loss_grad,
|
||||
ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,24 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/margin_rank_loss_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
margin_rank_loss,
|
||||
ops::MarginRankLossKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
margin_rank_loss_grad,
|
||||
ops::MarginRankLossGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,98 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
struct ReLU {
|
||||
HOSTDEVICE T operator()(const T& val) const {
|
||||
return val > 0 ? val : static_cast<T>(0);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Heaviside {
|
||||
HOSTDEVICE T operator()(const T& val) const {
|
||||
return static_cast<T>(val > 0 ? 1 : 0);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class MarginRankLossKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* out_t = ctx.Output<framework::Tensor>("Out");
|
||||
auto* act_t = ctx.Output<framework::Tensor>("Activated");
|
||||
|
||||
auto* label_t = ctx.Input<framework::Tensor>("Label");
|
||||
auto* x1_t = ctx.Input<framework::Tensor>("X1");
|
||||
auto* x2_t = ctx.Input<framework::Tensor>("X2");
|
||||
|
||||
out_t->mutable_data<T>(ctx.GetPlace());
|
||||
act_t->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto margin = static_cast<T>(ctx.Attr<T>("margin"));
|
||||
auto out = framework::EigenVector<T>::Flatten(*out_t);
|
||||
auto act = framework::EigenVector<T>::Flatten(*act_t);
|
||||
|
||||
auto label = framework::EigenVector<T>::Flatten(*label_t);
|
||||
auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
|
||||
auto x2 = framework::EigenVector<T>::Flatten(*x2_t);
|
||||
|
||||
auto& dev = ctx.GetEigenDevice<Place>();
|
||||
out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
|
||||
act.device(dev) = out.unaryExpr(Heaviside<T>());
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class MarginRankLossGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* d_x1_t =
|
||||
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
|
||||
auto* d_x2_t =
|
||||
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
|
||||
|
||||
auto* act_t = ctx.Input<framework::Tensor>("Activated");
|
||||
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto* label_t = ctx.Input<framework::Tensor>("Label");
|
||||
|
||||
auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
|
||||
auto act = framework::EigenVector<T>::Flatten(*act_t);
|
||||
auto label = framework::EigenVector<T>::Flatten(*label_t);
|
||||
auto& dev = ctx.GetEigenDevice<Place>();
|
||||
|
||||
// compute d_x1
|
||||
if (d_x1_t) {
|
||||
d_x1_t->mutable_data<T>(ctx.GetPlace());
|
||||
auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
|
||||
d_x1.device(dev) = -d_out * act * label;
|
||||
}
|
||||
// compute d_x2
|
||||
if (d_x2_t) {
|
||||
d_x2_t->mutable_data<T>(ctx.GetPlace());
|
||||
auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
|
||||
d_x2.device(dev) = d_out * act * label;
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,39 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestMarginRankLossOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "margin_rank_loss"
|
||||
batch_size = 5
|
||||
margin = 0.5
|
||||
# labels_{i} = {-1, 1}
|
||||
label = 2 * np.random.randint(
|
||||
0, 2, size=(batch_size, 1)).astype("float32") - 1
|
||||
x1 = np.random.random((batch_size, 1)).astype("float32")
|
||||
x2 = np.random.random((batch_size, 1)).astype("float32")
|
||||
# loss = max(0, -label * (x1 - x2) + margin)
|
||||
loss = -label * (x1 - x2) + margin
|
||||
loss = np.where(loss > 0, loss, 0)
|
||||
act = np.where(loss > 0, 1., 0.)
|
||||
|
||||
self.attrs = {'margin': margin}
|
||||
self.inputs = {'Label': label, 'X1': x1, 'X2': x2}
|
||||
self.outputs = {'Activated': act, 'Out': loss}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X1", "X2"], "Out")
|
||||
|
||||
def test_check_grad_ignore_x1(self):
|
||||
self.check_grad(["X2"], "Out", no_grad_set=set('X1'))
|
||||
|
||||
def test_check_grad_ignore_x2(self):
|
||||
self.check_grad(["X1"], "Out", no_grad_set=set('X2'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue