parent
284519561d
commit
b57a2b989b
@ -1,124 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def to_abs_offset_lod(lod):
|
||||
offset_lod = [[0] for i in lod]
|
||||
for i, level in enumerate(lod):
|
||||
for seq_len in level:
|
||||
offset_lod[i].append(offset_lod[i][-1] + seq_len)
|
||||
|
||||
if len(offset_lod) == 0 or len(offset_lod) == 1:
|
||||
return offset_lod
|
||||
import copy
|
||||
new_offset_lod = copy.deepcopy(offset_lod)
|
||||
for idx, val in enumerate(offset_lod[0]):
|
||||
new_offset_lod[0][idx] = offset_lod[1][val]
|
||||
return new_offset_lod
|
||||
|
||||
|
||||
def seq_concat(inputs, level):
|
||||
lod0 = inputs['X'][0][1][1]
|
||||
lod1 = inputs['X'][1][1][1]
|
||||
x0 = inputs['X'][0][1][0]
|
||||
x1 = inputs['X'][1][1][0]
|
||||
level_idx = len(lod0) - level - 1
|
||||
outs = []
|
||||
for i in range(len(lod0[level_idx])):
|
||||
sub_x0 = x0[to_abs_offset_lod(lod0)[level_idx][i]:to_abs_offset_lod(
|
||||
lod0)[level_idx][i + 1], :]
|
||||
sub_x1 = x1[to_abs_offset_lod(lod1)[level_idx][i]:to_abs_offset_lod(
|
||||
lod1)[level_idx][i + 1], :]
|
||||
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
|
||||
return np.concatenate(outs, axis=0)
|
||||
|
||||
|
||||
class TestSeqConcatOp(OpTest):
|
||||
def set_data(self):
|
||||
# two level, batch size is 3
|
||||
x0 = np.random.random((4, 6, 3)).astype('float32')
|
||||
lod0 = [[2, 2], [1, 1, 1, 1]]
|
||||
x1 = np.random.random((4, 8, 3)).astype('float32')
|
||||
lod1 = [[2, 2], [1, 1, 1, 1]]
|
||||
axis = 1
|
||||
level = 1
|
||||
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
||||
self.attrs = {'axis': axis, 'level': level}
|
||||
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "sequence_concat"
|
||||
self.set_data()
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['x0'], 'Out')
|
||||
|
||||
|
||||
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
|
||||
def set_data(self):
|
||||
# two level, batch size is 3
|
||||
x0 = np.random.random((4, 6, 3)).astype('float32')
|
||||
lod0 = [[2, 2], [1, 1, 1, 1]]
|
||||
x1 = np.random.random((7, 6, 3)).astype('float32')
|
||||
lod1 = [[2, 2], [1, 2, 2, 2]]
|
||||
axis = 0
|
||||
level = 0
|
||||
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
||||
self.attrs = {'axis': axis, 'level': level}
|
||||
out_lod = [[2, 2], [2, 3, 3, 3]]
|
||||
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
||||
|
||||
|
||||
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
|
||||
def set_data(self):
|
||||
# two level, batch size is 3
|
||||
x0 = np.random.random((4, 6, 3)).astype('float32')
|
||||
lod0 = [[2, 2], [1, 1, 1, 1]]
|
||||
x1 = np.random.random((7, 6, 3)).astype('float32')
|
||||
lod1 = [[3, 1], [1, 2, 2, 2]]
|
||||
axis = 0
|
||||
level = 1
|
||||
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
||||
self.attrs = {'axis': axis, 'level': level}
|
||||
out_lod = [[5, 3], [1, 1, 1, 2, 2, 1, 1, 2]]
|
||||
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
||||
|
||||
|
||||
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
|
||||
def set_data(self):
|
||||
# two level, batch size is 3
|
||||
x0 = np.random.random((4, 3, 4)).astype('float32')
|
||||
lod0 = [[1, 1, 1, 1]]
|
||||
x1 = np.random.random((7, 3, 4)).astype('float32')
|
||||
lod1 = [[1, 2, 2, 2]]
|
||||
axis = 0
|
||||
level = 0
|
||||
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
||||
self.attrs = {'axis': axis, 'level': level}
|
||||
out_lod = [[2, 3, 3, 3]]
|
||||
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue