Merge pull request #7469 from putcn/book_demo_distributed_fit_a_line
	
		
	
				
					
				
			Add book demo distributed fit a lineadd_depthwiseConv_op_gpu
						commit
						b58c5eec37
					
				@ -0,0 +1,62 @@
 | 
				
			||||
import numpy as np
 | 
				
			||||
import paddle.v2 as paddle
 | 
				
			||||
import paddle.v2.fluid as fluid
 | 
				
			||||
import os
 | 
				
			||||
 | 
				
			||||
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
 | 
				
			||||
 | 
				
			||||
y_predict = fluid.layers.fc(input=x, size=1, act=None)
 | 
				
			||||
 | 
				
			||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
 | 
				
			||||
 | 
				
			||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
 | 
				
			||||
avg_cost = fluid.layers.mean(x=cost)
 | 
				
			||||
 | 
				
			||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
 | 
				
			||||
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
 | 
				
			||||
 | 
				
			||||
BATCH_SIZE = 20
 | 
				
			||||
 | 
				
			||||
train_reader = paddle.batch(
 | 
				
			||||
    paddle.reader.shuffle(
 | 
				
			||||
        paddle.dataset.uci_housing.train(), buf_size=500),
 | 
				
			||||
    batch_size=BATCH_SIZE)
 | 
				
			||||
 | 
				
			||||
place = fluid.CPUPlace()
 | 
				
			||||
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
 | 
				
			||||
exe = fluid.Executor(place)
 | 
				
			||||
 | 
				
			||||
t = fluid.DistributeTranspiler()
 | 
				
			||||
# all parameter server endpoints list for spliting parameters
 | 
				
			||||
pserver_endpoints = os.getenv("PSERVERS")
 | 
				
			||||
# server endpoint for current node
 | 
				
			||||
current_endpoint = os.getenv("SERVER_ENDPOINT")
 | 
				
			||||
# run as trainer or parameter server
 | 
				
			||||
training_role = os.getenv("TRAINING_ROLE",
 | 
				
			||||
                          "TRAINER")  # get the training role: trainer/pserver
 | 
				
			||||
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
 | 
				
			||||
 | 
				
			||||
if training_role == "PSERVER":
 | 
				
			||||
    if not current_endpoint:
 | 
				
			||||
        print("need env SERVER_ENDPOINT")
 | 
				
			||||
        exit(1)
 | 
				
			||||
    pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
 | 
				
			||||
    exe.run(fluid.default_startup_program())
 | 
				
			||||
    exe.run(pserver_prog)
 | 
				
			||||
else:
 | 
				
			||||
    trainer_prog = t.get_trainer_program()
 | 
				
			||||
 | 
				
			||||
    exe.run(fluid.default_startup_program())
 | 
				
			||||
 | 
				
			||||
    PASS_NUM = 100
 | 
				
			||||
    for pass_id in range(PASS_NUM):
 | 
				
			||||
        fluid.io.save_persistables(exe, "./fit_a_line.model/")
 | 
				
			||||
        fluid.io.load_persistables(exe, "./fit_a_line.model/")
 | 
				
			||||
        for data in train_reader():
 | 
				
			||||
            avg_loss_value, = exe.run(trainer_prog,
 | 
				
			||||
                                      feed=feeder.feed(data),
 | 
				
			||||
                                      fetch_list=[avg_cost])
 | 
				
			||||
 | 
				
			||||
            if avg_loss_value[0] < 10.0:
 | 
				
			||||
                exit(0)
 | 
				
			||||
exit(1)
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue