parent
c6bfb7128b
commit
b6a0f9a32a
@ -0,0 +1,85 @@
|
||||
import paddle.v2 as paddle
|
||||
|
||||
|
||||
def event_handler(event):
|
||||
if isinstance(event, paddle.event.EndIteration):
|
||||
if event.batch_id % 100 == 0:
|
||||
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
|
||||
event.cost)
|
||||
else:
|
||||
pass
|
||||
|
||||
|
||||
def vgg_bn_drop(input):
|
||||
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
|
||||
return paddle.layer.img_conv_group(
|
||||
input=ipt,
|
||||
num_channels=num_channels,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
conv_num_filter=[num_filter] * groups,
|
||||
conv_filter_size=3,
|
||||
conv_act=paddle.activation.Relu(),
|
||||
conv_with_batchnorm=True,
|
||||
conv_batchnorm_drop_rate=dropouts,
|
||||
pool_type=pooling.Max())
|
||||
|
||||
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
|
||||
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
||||
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
||||
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
||||
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
||||
|
||||
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
|
||||
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
|
||||
bn = paddle.layer.batch_norm(
|
||||
input=fc1,
|
||||
act=paddle.activation.Relu(),
|
||||
layer_attr=ExtraAttr(drop_rate=0.5))
|
||||
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
|
||||
return fc2
|
||||
|
||||
|
||||
def main():
|
||||
datadim = 3 * 32 * 32
|
||||
classdim = 10
|
||||
|
||||
paddle.init(use_gpu=False, trainer_count=1)
|
||||
|
||||
image = paddle.layer.data(
|
||||
name="image", type=paddle.data_type.dense_vector(datadim))
|
||||
# net = vgg_bn_drop(image)
|
||||
out = paddle.layer.fc(input=image,
|
||||
size=classdim,
|
||||
act=paddle.activation.Softmax())
|
||||
|
||||
lbl = paddle.layer.data(
|
||||
name="label", type=paddle.data_type.integer_value(classdim))
|
||||
cost = paddle.layer.classification_cost(input=out, label=lbl)
|
||||
|
||||
parameters = paddle.parameters.create(cost)
|
||||
momentum_optimizer = paddle.optimizer.Momentum(
|
||||
momentum=0.9,
|
||||
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128),
|
||||
learning_rate=0.1 / 128.0,
|
||||
learning_rate_decay_a=0.1,
|
||||
learning_rate_decay_b=50000 * 100,
|
||||
learning_rate_schedule='discexp',
|
||||
batch_size=128)
|
||||
|
||||
trainer = paddle.trainer.SGD(update_equation=momentum_optimizer)
|
||||
trainer.train(
|
||||
reader=paddle.reader.batched(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.cifar.train10(), buf_size=3072),
|
||||
batch_size=128),
|
||||
cost=cost,
|
||||
num_passes=1,
|
||||
parameters=parameters,
|
||||
event_handler=event_handler,
|
||||
reader_dict={'image': 0,
|
||||
'label': 1}, )
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue