Fix Using "isinstance" in Loop, test=develop (#28641)
Fix a bug that used in PaddleGAN model which used `isinstance` in a for loopmusl/fix_failed_unittests_in_musl
parent
e4f9415338
commit
b6f86b8491
@ -0,0 +1,112 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
|
||||
class SimpleReturnLayer(nn.Layer):
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class AddAttrLayer(nn.Layer):
|
||||
def __init__(self):
|
||||
super(AddAttrLayer, self).__init__()
|
||||
self.attr = None
|
||||
|
||||
def forward(self, x):
|
||||
out = x + self.attr
|
||||
return out
|
||||
|
||||
|
||||
class IsInstanceLayer(nn.Layer):
|
||||
def __init__(self, layer):
|
||||
super(IsInstanceLayer, self).__init__()
|
||||
self.layer = layer
|
||||
|
||||
@paddle.jit.to_static
|
||||
def forward(self, x):
|
||||
if isinstance(self.layer, (AddAttrLayer, )):
|
||||
self.layer.attr = x
|
||||
res = self.layer(x)
|
||||
return res
|
||||
|
||||
|
||||
class SequentialLayer(nn.Layer):
|
||||
def __init__(self, layers):
|
||||
super(SequentialLayer, self).__init__()
|
||||
self.layers = nn.LayerList(layers)
|
||||
|
||||
@paddle.jit.to_static
|
||||
def forward(self, x):
|
||||
res = x
|
||||
for layer in self.layers:
|
||||
if isinstance(layer, AddAttrLayer):
|
||||
layer.attr = x
|
||||
res = layer(res)
|
||||
return res
|
||||
|
||||
|
||||
def train(model, to_static):
|
||||
prog_trans = paddle.jit.ProgramTranslator.get_instance()
|
||||
prog_trans.enable(to_static)
|
||||
|
||||
x = paddle.ones(shape=[2, 3], dtype='int32')
|
||||
out = model(x)
|
||||
|
||||
return out.numpy()
|
||||
|
||||
|
||||
class TestIsinstance(unittest.TestCase):
|
||||
def test_isinstance_simple_return_layer(self):
|
||||
model = IsInstanceLayer(SimpleReturnLayer())
|
||||
self._test_model(model)
|
||||
|
||||
def test_isinstance_add_attr_layer(self):
|
||||
model = IsInstanceLayer(AddAttrLayer())
|
||||
self._test_model(model)
|
||||
|
||||
def test_sequential_layer(self):
|
||||
layers = []
|
||||
for i in range(5):
|
||||
layers.append(SimpleReturnLayer())
|
||||
layers.append(AddAttrLayer())
|
||||
model = SequentialLayer(layers)
|
||||
self._test_model(model)
|
||||
|
||||
def _test_model(self, model):
|
||||
st_out = train(model, to_static=True)
|
||||
dy_out = train(model, to_static=False)
|
||||
self.assertTrue(
|
||||
np.allclose(dy_out, st_out),
|
||||
msg="dy_out:\n {}\n st_out:\n{}".format(dy_out, st_out))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue