|
|
|
@ -103,108 +103,74 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
|
|
|
input_slots->assign({input_tensor});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
|
|
|
|
|
25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
|
|
|
|
|
44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
|
|
|
|
|
14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
|
|
|
|
|
|
|
|
|
|
void TestLACPrediction(const std::string &model_path,
|
|
|
|
|
const std::string &data_file, const int batch_size,
|
|
|
|
|
const int repeat, bool use_analysis = false) {
|
|
|
|
|
AnalysisConfig cfg;
|
|
|
|
|
cfg.model_dir = model_path;
|
|
|
|
|
cfg.use_gpu = false;
|
|
|
|
|
cfg.device = 0;
|
|
|
|
|
cfg.specify_input_name = true;
|
|
|
|
|
cfg.enable_ir_optim = true;
|
|
|
|
|
void SetConfig(AnalysisConfig *cfg) {
|
|
|
|
|
cfg->model_dir = FLAGS_infer_model;
|
|
|
|
|
cfg->use_gpu = false;
|
|
|
|
|
cfg->device = 0;
|
|
|
|
|
cfg->specify_input_name = true;
|
|
|
|
|
cfg->enable_ir_optim = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<PaddleTensor> input_slots, outputs_slots;
|
|
|
|
|
DataRecord data(data_file, batch_size);
|
|
|
|
|
GetOneBatch(&input_slots, &data, batch_size);
|
|
|
|
|
std::unique_ptr<PaddlePredictor> predictor;
|
|
|
|
|
if (use_analysis) {
|
|
|
|
|
predictor =
|
|
|
|
|
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
|
|
|
|
|
} else {
|
|
|
|
|
predictor =
|
|
|
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
|
|
|
|
|
}
|
|
|
|
|
for (int i = 0; i < FLAGS_burning; i++) {
|
|
|
|
|
predictor->Run(input_slots, &outputs_slots);
|
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
|
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
|
|
|
std::vector<PaddleTensor> input_slots;
|
|
|
|
|
int epoch = FLAGS_test_all_data ? data.batched_datas.size() : 1;
|
|
|
|
|
LOG(INFO) << "number of samples: " << epoch;
|
|
|
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
|
|
|
GetOneBatch(&input_slots, &data, FLAGS_batch_size);
|
|
|
|
|
(*inputs).emplace_back(input_slots);
|
|
|
|
|
}
|
|
|
|
|
Timer timer;
|
|
|
|
|
if (FLAGS_test_all_data) {
|
|
|
|
|
LOG(INFO) << "test all data";
|
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
|
|
|
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
|
|
|
|
|
GetOneBatch(&input_slots, &data, batch_size);
|
|
|
|
|
input_slots_all.emplace_back(input_slots);
|
|
|
|
|
}
|
|
|
|
|
LOG(INFO) << "total number of samples: " << data.datasets.size();
|
|
|
|
|
TestPrediction(cfg, input_slots_all, &outputs_slots, FLAGS_num_threads);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
timer.tic();
|
|
|
|
|
for (int i = 0; i < repeat; i++) {
|
|
|
|
|
predictor->Run(input_slots, &outputs_slots);
|
|
|
|
|
}
|
|
|
|
|
PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// check result
|
|
|
|
|
EXPECT_EQ(outputs_slots.size(), 1UL);
|
|
|
|
|
auto &out = outputs_slots[0];
|
|
|
|
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
|
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
|
|
|
|
|
PADDLE_ENFORCE_GT(size, 0);
|
|
|
|
|
EXPECT_GE(size, batch1_size);
|
|
|
|
|
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
|
|
|
|
for (size_t i = 0; i < batch1_size; ++i) {
|
|
|
|
|
EXPECT_EQ(pdata[i], lac_ref_data[i]);
|
|
|
|
|
}
|
|
|
|
|
// Easy for profiling independently.
|
|
|
|
|
TEST(Analyzer_LAC, profile) {
|
|
|
|
|
AnalysisConfig cfg;
|
|
|
|
|
SetConfig(&cfg);
|
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
|
|
|
|
|
|
|
|
if (use_analysis) {
|
|
|
|
|
// run once for comparion as reference
|
|
|
|
|
auto ref_predictor =
|
|
|
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
|
|
|
|
|
std::vector<PaddleTensor> ref_outputs_slots;
|
|
|
|
|
ref_predictor->Run(input_slots, &ref_outputs_slots);
|
|
|
|
|
CompareResult(ref_outputs_slots, outputs_slots);
|
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
|
|
|
SetInput(&input_slots_all);
|
|
|
|
|
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
|
|
|
|
|
|
AnalysisPredictor *analysis_predictor =
|
|
|
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
|
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
|
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
|
|
|
framework::ir::kFuseStatisAttr);
|
|
|
|
|
for (auto &item : fuse_statis) {
|
|
|
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
|
|
|
}
|
|
|
|
|
int num_ops = 0;
|
|
|
|
|
for (auto &node :
|
|
|
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
|
|
|
if (node->IsFunction()) {
|
|
|
|
|
++num_ops;
|
|
|
|
|
}
|
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
|
|
|
// the first inference result
|
|
|
|
|
const int64_t lac_ref_data[] = {
|
|
|
|
|
24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25,
|
|
|
|
|
44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14,
|
|
|
|
|
15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
|
|
|
|
|
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
|
|
|
|
|
size_t size = GetSize(outputs[0]);
|
|
|
|
|
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
|
|
|
|
|
PADDLE_ENFORCE_GE(size, batch1_size);
|
|
|
|
|
int64_t *pdata = static_cast<int64_t *>(outputs[0].data.data());
|
|
|
|
|
for (size_t i = 0; i < batch1_size; ++i) {
|
|
|
|
|
EXPECT_EQ(pdata[i], lac_ref_data[i]);
|
|
|
|
|
}
|
|
|
|
|
LOG(INFO) << "has num ops: " << num_ops;
|
|
|
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
|
|
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
|
|
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
|
|
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
|
|
|
|
|
EXPECT_EQ(num_ops, 11);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Analyzer_LAC, native) {
|
|
|
|
|
LOG(INFO) << "LAC with native";
|
|
|
|
|
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
|
|
|
|
|
FLAGS_repeat);
|
|
|
|
|
// Check the fuse status
|
|
|
|
|
TEST(Analyzer_LAC, fuse_statis) {
|
|
|
|
|
AnalysisConfig cfg;
|
|
|
|
|
SetConfig(&cfg);
|
|
|
|
|
|
|
|
|
|
int num_ops;
|
|
|
|
|
auto fuse_statis = GetFuseStatis(cfg, &num_ops);
|
|
|
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
|
|
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
|
|
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
|
|
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
|
|
|
|
|
EXPECT_EQ(num_ops, 11);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Analyzer_LAC, analysis) {
|
|
|
|
|
LOG(INFO) << "LAC with analysis";
|
|
|
|
|
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
|
|
|
|
|
FLAGS_repeat, true);
|
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
|
|
|
TEST(Analyzer_LAC, compare) {
|
|
|
|
|
AnalysisConfig cfg;
|
|
|
|
|
SetConfig(&cfg);
|
|
|
|
|
|
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
|
|
|
SetInput(&input_slots_all);
|
|
|
|
|
CompareNativeAndAnalysis(cfg, input_slots_all);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace analysis
|
|
|
|
|