step lr_scheduler on epoch end in hapi/model.py fit (#27730)

* step lr_scheduler on epoch end in hapi/model.py fit. test=develop
swt-req
Kaipeng Deng 4 years ago committed by GitHub
parent d17681dcc7
commit b808979b8c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1461,6 +1461,11 @@ class Model(object):
cbks.on_end('eval', eval_logs)
# step learning rate scheduler on each epcoh end
if isinstance(self._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self._optimizer._learning_rate.step()
cbks.on_end('train', logs)
self._test_dataloader = None

@ -33,7 +33,7 @@ from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.metric import Accuracy
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.io import DistributedBatchSampler, Dataset
from paddle.hapi.model import prepare_distributed_context
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
@ -295,6 +295,15 @@ class MyModel(paddle.nn.Layer):
return y
class MyDataset(Dataset):
def __getitem__(self, idx):
return np.random.random(size=(20,)).astype(np.float32), \
np.random.randint(0, 10, size=(1,)).astype(np.int64)
def __len__(self):
return 40
class TestModelFunction(unittest.TestCase):
def set_seed(self, seed=1024):
paddle.manual_seed(seed)
@ -599,6 +608,44 @@ class TestModelFunction(unittest.TestCase):
shutil.rmtree(save_dir)
class TestModelWithLRScheduler(unittest.TestCase):
def test_fit(self):
def make_optimizer(parameters=None):
base_lr = 1e-3
momentum = 0.9
weight_decay = 5e-4
boundaries = [5, 8]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=boundaries, values=values)
learning_rate = paddle.optimizer.lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=4,
start_lr=base_lr / 5.,
end_lr=base_lr,
verbose=True)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
weight_decay=weight_decay,
momentum=momentum,
parameters=parameters)
return optimizer
device = paddle.set_device('cpu')
fluid.enable_dygraph(device)
net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = make_optimizer(net.parameters())
model = Model(net, inputs, labels)
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
dataset = MyDataset()
model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)
paddle.enable_static()
class TestRaiseError(unittest.TestCase):
def test_input_without_name(self):
net = MyModel()

Loading…
Cancel
Save