Merge branch 'develop' of https://github.com/paddlepaddle/paddle into reformat-paddle-operators
	
		
	
				
					
				
			
						commit
						b8ff82759c
					
				
											
												Binary file not shown.
											
										
									
								@ -0,0 +1,154 @@
 | 
				
			||||
#edit-mode: -*- python -*-
 | 
				
			||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
 | 
				
			||||
 | 
				
			||||
# Note: when making change to this file, please make sure
 | 
				
			||||
# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest
 | 
				
			||||
# for comparing these two nets can pass (test_CompareTwoNets)
 | 
				
			||||
 | 
				
			||||
default_initial_std(0.1)
 | 
				
			||||
default_device(0)
 | 
				
			||||
 | 
				
			||||
word_dim = 999
 | 
				
			||||
l1 = 0
 | 
				
			||||
l2 = 0
 | 
				
			||||
 | 
				
			||||
model_type("nn")
 | 
				
			||||
 | 
				
			||||
sparse_update = get_config_arg("sparse_update", bool, False)
 | 
				
			||||
 | 
				
			||||
TrainData(ProtoData(        
 | 
				
			||||
            type = "proto_sequence",
 | 
				
			||||
            files = ('trainer/tests/train_sparse.list'), 
 | 
				
			||||
            ))
 | 
				
			||||
 | 
				
			||||
Settings(
 | 
				
			||||
    algorithm='sgd',
 | 
				
			||||
    batch_size=100,
 | 
				
			||||
    learning_rate=0.0001,
 | 
				
			||||
    learning_rate_decay_a=4e-08,
 | 
				
			||||
    learning_rate_decay_b=0.0,
 | 
				
			||||
    learning_rate_schedule='poly',
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
wordvec_dim = 32
 | 
				
			||||
layer2_dim = 16
 | 
				
			||||
layer3_dim = 16
 | 
				
			||||
hidden_dim = 32
 | 
				
			||||
 | 
				
			||||
slot_names = ["qb", "qw", "tb", "tw"]
 | 
				
			||||
 | 
				
			||||
def ltr_network(network_name,
 | 
				
			||||
                word_dim=word_dim,
 | 
				
			||||
                wordvec_dim=wordvec_dim,
 | 
				
			||||
                layer2_dim=layer2_dim,
 | 
				
			||||
                layer3_dim=layer3_dim,
 | 
				
			||||
                hidden_dim=hidden_dim,
 | 
				
			||||
                slot_names=slot_names,
 | 
				
			||||
                l1=l1,
 | 
				
			||||
                l2=l2):
 | 
				
			||||
 | 
				
			||||
    slotnum = len(slot_names)
 | 
				
			||||
    for i in xrange(slotnum):
 | 
				
			||||
        Inputs(slot_names[i] + network_name)
 | 
				
			||||
    for i in xrange(slotnum):
 | 
				
			||||
        Layer(
 | 
				
			||||
            name = slot_names[i] + network_name,
 | 
				
			||||
            type = "data",
 | 
				
			||||
            size = word_dim,
 | 
				
			||||
            device = -1,
 | 
				
			||||
        )
 | 
				
			||||
        Layer(
 | 
				
			||||
            name = slot_names[i] + "_embedding_" + network_name,
 | 
				
			||||
            type = "mixed",
 | 
				
			||||
            size = wordvec_dim,
 | 
				
			||||
            bias = False,
 | 
				
			||||
            device = -1,
 | 
				
			||||
            inputs = TableProjection(slot_names[i] + network_name,
 | 
				
			||||
                                     parameter_name = "embedding.w0",
 | 
				
			||||
                                     decay_rate_l1=l1,
 | 
				
			||||
                                     sparse_remote_update = True,
 | 
				
			||||
                                     sparse_update = sparse_update,
 | 
				
			||||
                                     ),
 | 
				
			||||
        )
 | 
				
			||||
        Layer(
 | 
				
			||||
            name = slot_names[i] + "_rnn1_" + network_name,
 | 
				
			||||
            type = "recurrent",
 | 
				
			||||
            active_type = "tanh",
 | 
				
			||||
            bias = Bias(initial_std = 0,
 | 
				
			||||
                        parameter_name = "rnn1.bias"),
 | 
				
			||||
            inputs = Input(slot_names[i] + "_embedding_" + network_name,
 | 
				
			||||
                           parameter_name = "rnn1.w0")
 | 
				
			||||
        )
 | 
				
			||||
        Layer(
 | 
				
			||||
            name = slot_names[i] + "_rnnlast_" + network_name,
 | 
				
			||||
            type = "seqlastins",
 | 
				
			||||
            inputs = [
 | 
				
			||||
                slot_names[i] + "_rnn1_" + network_name,
 | 
				
			||||
            ],
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
    Layer(
 | 
				
			||||
        name = "layer2_" + network_name,
 | 
				
			||||
        type = "fc",
 | 
				
			||||
        active_type = "tanh",
 | 
				
			||||
        size = layer2_dim,
 | 
				
			||||
        bias = Bias(parameter_name = "layer2.bias"),
 | 
				
			||||
        inputs = [Input(slot_name + "_rnnlast_" + network_name, 
 | 
				
			||||
                        parameter_name = "_layer2_" + slot_name + ".w", 
 | 
				
			||||
                        decay_rate = l2, 
 | 
				
			||||
                        initial_smart = True) for slot_name in slot_names]
 | 
				
			||||
    )
 | 
				
			||||
    Layer(
 | 
				
			||||
        name = "layer3_" + network_name,
 | 
				
			||||
        type = "fc",
 | 
				
			||||
        active_type = "tanh",
 | 
				
			||||
        size = layer3_dim,
 | 
				
			||||
        bias = Bias(parameter_name = "layer3.bias"),
 | 
				
			||||
        inputs = [
 | 
				
			||||
            Input("layer2_" + network_name, 
 | 
				
			||||
                  parameter_name = "_layer3.w", 
 | 
				
			||||
                  decay_rate = l2, 
 | 
				
			||||
                  initial_smart = True),
 | 
				
			||||
        ]
 | 
				
			||||
    )
 | 
				
			||||
    Layer(
 | 
				
			||||
        name = "output_" + network_name,
 | 
				
			||||
        type = "fc",
 | 
				
			||||
        size = 1,
 | 
				
			||||
        bias = False,
 | 
				
			||||
        inputs = [
 | 
				
			||||
                  Input("layer3_" + network_name,
 | 
				
			||||
                       parameter_name = "_layerO.w"),
 | 
				
			||||
                 ],
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
ltr_network("left")
 | 
				
			||||
ltr_network("right")
 | 
				
			||||
Inputs("label")
 | 
				
			||||
Layer(
 | 
				
			||||
    name = "label",
 | 
				
			||||
    type = "data",
 | 
				
			||||
    size = 1,
 | 
				
			||||
    )
 | 
				
			||||
Outputs("cost", "qb_rnnlast_left")
 | 
				
			||||
Layer(
 | 
				
			||||
    name = "cost",
 | 
				
			||||
    type = "rank-cost",
 | 
				
			||||
    inputs = ["output_left", "output_right", "label"],
 | 
				
			||||
    )
 | 
				
			||||
@ -0,0 +1 @@
 | 
				
			||||
trainer/tests/compare_sparse_data
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue