Add fp16 support for dygraph (#19828)
* Add fp16 support for dygraph test=develop * Add unit test test=developexpand_as_op_1
parent
110be57c1b
commit
b99fc38cec
@ -0,0 +1,132 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
|
||||
|
||||
|
||||
class SimpleImgConvPool(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
num_filters,
|
||||
filter_size,
|
||||
pool_size,
|
||||
pool_stride,
|
||||
pool_padding=0,
|
||||
pool_type='max',
|
||||
global_pooling=False,
|
||||
conv_stride=1,
|
||||
conv_padding=0,
|
||||
conv_dilation=1,
|
||||
conv_groups=1,
|
||||
act=None,
|
||||
use_cudnn=False,
|
||||
dtype='float32',
|
||||
param_attr=None,
|
||||
bias_attr=None):
|
||||
super(SimpleImgConvPool, self).__init__(name_scope)
|
||||
|
||||
self._conv2d = Conv2D(
|
||||
self.full_name(),
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
stride=conv_stride,
|
||||
padding=conv_padding,
|
||||
dilation=conv_dilation,
|
||||
groups=conv_groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
dtype=dtype,
|
||||
act=act)
|
||||
|
||||
self._pool2d = Pool2D(
|
||||
self.full_name(),
|
||||
pool_size=pool_size,
|
||||
pool_type=pool_type,
|
||||
pool_stride=pool_stride,
|
||||
pool_padding=pool_padding,
|
||||
global_pooling=global_pooling,
|
||||
use_cudnn=use_cudnn)
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._conv2d(inputs)
|
||||
x = self._pool2d(x)
|
||||
return x
|
||||
|
||||
|
||||
class MNIST(fluid.dygraph.Layer):
|
||||
def __init__(self, name_scope, dtype="float32"):
|
||||
super(MNIST, self).__init__(name_scope)
|
||||
|
||||
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
||||
self.full_name(),
|
||||
num_filters=20,
|
||||
filter_size=5,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
dtype=dtype,
|
||||
use_cudnn=True)
|
||||
|
||||
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
||||
self.full_name(),
|
||||
num_filters=50,
|
||||
filter_size=5,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
dtype=dtype,
|
||||
use_cudnn=True)
|
||||
|
||||
pool_2_shape = 50 * 4 * 4
|
||||
SIZE = 10
|
||||
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
|
||||
self._fc = FC(self.full_name(),
|
||||
10,
|
||||
param_attr=fluid.param_attr.ParamAttr(
|
||||
initializer=fluid.initializer.NormalInitializer(
|
||||
loc=0.0, scale=scale)),
|
||||
act="softmax",
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, inputs, label):
|
||||
x = self._simple_img_conv_pool_1(inputs)
|
||||
x = self._simple_img_conv_pool_2(x)
|
||||
cost = self._fc(x)
|
||||
loss = fluid.layers.cross_entropy(cost, label)
|
||||
avg_loss = fluid.layers.mean(loss)
|
||||
return avg_loss
|
||||
|
||||
|
||||
class TestMnist(unittest.TestCase):
|
||||
def test_mnist_fp16(self):
|
||||
if not fluid.is_compiled_with_cuda():
|
||||
return
|
||||
x = np.random.randn(1, 3, 224, 224).astype("float16")
|
||||
y = np.random.randn(1, 1).astype("int64")
|
||||
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
|
||||
model = MNIST("mnist", dtype="float16")
|
||||
x = fluid.dygraph.to_variable(x)
|
||||
y = fluid.dygraph.to_variable(y)
|
||||
print(model(x, y))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue