|
|
|
@ -32,6 +32,17 @@ __all__ = ["init_parallel_env"]
|
|
|
|
|
|
|
|
|
|
ParallelStrategy = core.ParallelStrategy
|
|
|
|
|
|
|
|
|
|
# NOTE(chenweihang): Maintain a global parallel env to avoid
|
|
|
|
|
# initializing ParallelEnv every time and improve performance
|
|
|
|
|
_global_parallel_env = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_global_parallel_env():
|
|
|
|
|
global _global_parallel_env
|
|
|
|
|
if _global_parallel_env is None:
|
|
|
|
|
_global_parallel_env = ParallelEnv()
|
|
|
|
|
return _global_parallel_env
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _start_kv_server(port, http_server_d):
|
|
|
|
|
from paddle.distributed.fleet.utils.http_server import KVServer
|
|
|
|
@ -48,8 +59,7 @@ def init_parallel_env():
|
|
|
|
|
Initialize parallel training environment in dynamic graph mode.
|
|
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
Now only supports initializing the GPU parallel training
|
|
|
|
|
environment and using NCCL for communication.
|
|
|
|
|
Now initialize both `NCCL` and `GLOO` contexts for communication.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None
|
|
|
|
@ -72,13 +82,10 @@ def init_parallel_env():
|
|
|
|
|
return self._linear2(self._linear1(x))
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
|
# 1. enable dynamic mode
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# 2. initialize parallel environment
|
|
|
|
|
# 1. initialize parallel environment
|
|
|
|
|
dist.init_parallel_env()
|
|
|
|
|
|
|
|
|
|
# 3. create data parallel layer & optimizer
|
|
|
|
|
# 2. create data parallel layer & optimizer
|
|
|
|
|
layer = LinearNet()
|
|
|
|
|
dp_layer = paddle.DataParallel(layer)
|
|
|
|
|
|
|
|
|
@ -86,7 +93,7 @@ def init_parallel_env():
|
|
|
|
|
adam = opt.Adam(
|
|
|
|
|
learning_rate=0.001, parameters=dp_layer.parameters())
|
|
|
|
|
|
|
|
|
|
# 4. run layer
|
|
|
|
|
# 3. run layer
|
|
|
|
|
inputs = paddle.randn([10, 10], 'float32')
|
|
|
|
|
outputs = dp_layer(inputs)
|
|
|
|
|
labels = paddle.randn([10, 1], 'float32')
|
|
|
|
@ -101,6 +108,18 @@ def init_parallel_env():
|
|
|
|
|
dist.spawn(train)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# 0. get env & check world size
|
|
|
|
|
global _global_parallel_env
|
|
|
|
|
# when call init_parallel_env, need update `_global_parallel_env`
|
|
|
|
|
_global_parallel_env = ParallelEnv()
|
|
|
|
|
parallel_env = _global_parallel_env
|
|
|
|
|
# if not parallel, `init_parallel_env` do nothing
|
|
|
|
|
if parallel_env.world_size < 2:
|
|
|
|
|
warnings.warn(
|
|
|
|
|
"Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
|
|
|
|
|
)
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# 1. gpu check
|
|
|
|
|
if not core.is_compiled_with_cuda():
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
@ -122,17 +141,14 @@ def init_parallel_env():
|
|
|
|
|
_check_var_exists("PADDLE_TRAINERS_NUM")
|
|
|
|
|
_check_var_exists("PADDLE_TRAINER_ENDPOINTS")
|
|
|
|
|
|
|
|
|
|
if ParallelEnv().world_size < 2:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# 3: init gloo context (step 1: httpsever start)
|
|
|
|
|
ep_rank_0 = ParallelEnv().trainer_endpoints[0].split(":")
|
|
|
|
|
ep_rank = ParallelEnv().trainer_endpoints[ParallelEnv().rank].split(":")
|
|
|
|
|
ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
|
|
|
|
|
ep_rank = parallel_env.trainer_endpoints[parallel_env.rank].split(":")
|
|
|
|
|
manager = Manager()
|
|
|
|
|
# glboal dict to store status
|
|
|
|
|
http_server_d = manager.dict()
|
|
|
|
|
http_server_d["running"] = False
|
|
|
|
|
if ParallelEnv().rank == 0:
|
|
|
|
|
if parallel_env.rank == 0:
|
|
|
|
|
http_server = Process(
|
|
|
|
|
target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d))
|
|
|
|
|
http_server.daemon = True
|
|
|
|
@ -143,10 +159,10 @@ def init_parallel_env():
|
|
|
|
|
strategy = ParallelStrategy()
|
|
|
|
|
if parallel_helper._is_parallel_ctx_initialized():
|
|
|
|
|
warnings.warn("The parallel environment has been initialized.")
|
|
|
|
|
strategy.nranks = ParallelEnv().world_size
|
|
|
|
|
strategy.local_rank = ParallelEnv().rank
|
|
|
|
|
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
|
|
|
|
|
strategy.current_endpoint = ParallelEnv().current_endpoint
|
|
|
|
|
strategy.nranks = parallel_env.world_size
|
|
|
|
|
strategy.local_rank = parallel_env.rank
|
|
|
|
|
strategy.trainer_endpoints = parallel_env.trainer_endpoints
|
|
|
|
|
strategy.current_endpoint = parallel_env.current_endpoint
|
|
|
|
|
|
|
|
|
|
# NOTE(chenweihang): [ why config global place here? ]
|
|
|
|
|
# the dygraph mode will be set to default mode,
|
|
|
|
@ -154,7 +170,7 @@ def init_parallel_env():
|
|
|
|
|
# directly, if they want to switch default place,
|
|
|
|
|
# they need to call a function to change default place,
|
|
|
|
|
# here just set correctly place to users
|
|
|
|
|
place = core.CUDAPlace(ParallelEnv().device_id)
|
|
|
|
|
place = core.CUDAPlace(parallel_env.device_id)
|
|
|
|
|
_set_expected_place(place)
|
|
|
|
|
|
|
|
|
|
# init nccl context
|
|
|
|
@ -165,11 +181,11 @@ def init_parallel_env():
|
|
|
|
|
# dividing init_gloo into two part beacause nccl and gloo
|
|
|
|
|
# are separately looking for free ports which sometimes
|
|
|
|
|
# leads to port-conflict.
|
|
|
|
|
wait_server_ready([ParallelEnv().trainer_endpoints[0]])
|
|
|
|
|
wait_server_ready([parallel_env.trainer_endpoints[0]])
|
|
|
|
|
|
|
|
|
|
gloo_strategy = core.GlooParallelStrategy()
|
|
|
|
|
gloo_strategy.rank = ParallelEnv().rank
|
|
|
|
|
gloo_strategy.rank_num = ParallelEnv().world_size
|
|
|
|
|
gloo_strategy.rank = parallel_env.rank
|
|
|
|
|
gloo_strategy.rank_num = parallel_env.world_size
|
|
|
|
|
gloo_strategy.ip_address = ep_rank_0[0]
|
|
|
|
|
gloo_strategy.ip_port = int(ep_rank_0[1])
|
|
|
|
|
default_init_timeout_seconds = 3600
|
|
|
|
@ -178,7 +194,7 @@ def init_parallel_env():
|
|
|
|
|
gloo_strategy.run_seconds = default_run_timeout_seconds
|
|
|
|
|
gloo = core.GlooParallelContext(gloo_strategy)
|
|
|
|
|
gloo.init()
|
|
|
|
|
if ParallelEnv().rank == 0:
|
|
|
|
|
if parallel_env.rank == 0:
|
|
|
|
|
http_server_d["running"] = False
|
|
|
|
|
http_server.join()
|
|
|
|
|
|
|
|
|
@ -203,7 +219,7 @@ def get_rank():
|
|
|
|
|
print("The rank is %d" % dist.get_rank())
|
|
|
|
|
# The rank is 0
|
|
|
|
|
"""
|
|
|
|
|
return ParallelEnv().rank
|
|
|
|
|
return _get_global_parallel_env().rank
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_world_size():
|
|
|
|
@ -226,4 +242,4 @@ def get_world_size():
|
|
|
|
|
print("The world_size is %d" % dist.get_world_size())
|
|
|
|
|
# The world_size is 4
|
|
|
|
|
"""
|
|
|
|
|
return ParallelEnv().world_size
|
|
|
|
|
return _get_global_parallel_env().world_size
|
|
|
|
|