fix softmax_with_cross_entropy api en docs (#29116)

musl/disable_test_yolov3_temporarily
Guanghua Yu 5 years ago committed by GitHub
parent 0dfb81614b
commit bb64efb1d0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1162,9 +1162,6 @@ def softmax_with_cross_entropy(logits,
return_softmax=False,
axis=-1):
r"""
:alias_main: paddle.nn.functional.softmax_with_cross_entropy
:alias: paddle.nn.functional.softmax_with_cross_entropy,paddle.nn.functional.loss.softmax_with_cross_entropy
:old_api: paddle.fluid.layers.softmax_with_cross_entropy
This operator implements the cross entropy loss function with softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function
@ -1209,8 +1206,8 @@ def softmax_with_cross_entropy(logits,
and then cross entropy loss is calculated by softmax and label.
Args:
logits (Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
label (Variable): The ground truth ``Tensor`` , data type is the same
logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
label (Tensor): The ground truth ``Tensor`` , data type is the same
as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
Label is a ``Tensor`` in the same shape with :attr:`logits`.
If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
@ -1236,7 +1233,7 @@ def softmax_with_cross_entropy(logits,
is the rank of input :attr:`logits`. Default: -1.
Returns:
``Variable`` or Tuple of two ``Variable`` : Return the cross entropy loss if \
``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple \
(loss, softmax), softmax is in the same shape \
with input logits and cross entropy loss is in \
@ -1246,13 +1243,17 @@ def softmax_with_cross_entropy(logits,
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import numpy as np
data = fluid.data(name='data', shape=[-1, 128], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.softmax_with_cross_entropy(
logits=fc, label=label)
data = np.random.rand(128).astype("float32")
label = np.random.rand(1).astype("int64")
data = paddle.to_tensor(data)
label = paddle.to_tensor(label)
linear = paddle.nn.Linear(128, 100)
x = linear(data)
out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
print(out)
"""
if in_dygraph_mode():
softmax, loss = core.ops.softmax_with_cross_entropy(

Loading…
Cancel
Save