|
|
|
@ -176,7 +176,7 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
|
|
|
|
|
self.assertEqual(output_index[i], data[i][0])
|
|
|
|
|
|
|
|
|
|
# reader returns 3 featreus, but only use 2 features
|
|
|
|
|
# reader returns 3 features, but only use 2 features
|
|
|
|
|
data_types = [('fea0', data_type.dense_vector(100)),
|
|
|
|
|
('fea2', data_type.integer_value(10))]
|
|
|
|
|
feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
|
|
|
|
@ -187,6 +187,27 @@ class DataFeederTest(unittest.TestCase):
|
|
|
|
|
self.assertEqual(output_dense[i].all(), data[i][2].all())
|
|
|
|
|
self.assertEqual(output_index[i], data[i][0])
|
|
|
|
|
|
|
|
|
|
# reader returns 3 featreus, one is duplicate data
|
|
|
|
|
data_types = [('fea0', data_type.dense_vector(100)),
|
|
|
|
|
('fea1', data_type.sparse_binary_vector(20000)),
|
|
|
|
|
('fea2', data_type.integer_value(10)),
|
|
|
|
|
('fea3', data_type.dense_vector(100))]
|
|
|
|
|
feeder = DataFeeder(data_types,
|
|
|
|
|
{'fea0': 2,
|
|
|
|
|
'fea1': 1,
|
|
|
|
|
'fea2': 0,
|
|
|
|
|
'fea3': 2})
|
|
|
|
|
arg = feeder(data)
|
|
|
|
|
fea0 = arg.getSlotValue(0).copyToNumpyMat()
|
|
|
|
|
fea1 = arg.getSlotValue(1)
|
|
|
|
|
fea2 = arg.getSlotIds(2).copyToNumpyArray()
|
|
|
|
|
fea3 = arg.getSlotValue(3).copyToNumpyMat()
|
|
|
|
|
for i in xrange(batch_size):
|
|
|
|
|
self.assertEqual(fea0[i].all(), data[i][2].all())
|
|
|
|
|
self.assertEqual(fea1.getSparseRowCols(i), data[i][1])
|
|
|
|
|
self.assertEqual(fea2[i], data[i][0])
|
|
|
|
|
self.assertEqual(fea3[i].all(), data[i][2].all())
|
|
|
|
|
|
|
|
|
|
def test_multiple_features_tuple(self):
|
|
|
|
|
batch_size = 2
|
|
|
|
|
data = []
|
|
|
|
|