Add paddle.tensor.math.prod (#26351)
* Add new API: paddle.prod test=developrevert-24895-update_cub
parent
40d193ed17
commit
bb7fd0974f
@ -0,0 +1,132 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestProdOp(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.input = np.random.random(size=(10, 10, 5)).astype(np.float32)
|
||||
|
||||
def run_imperative(self):
|
||||
input = paddle.to_tensor(self.input)
|
||||
dy_result = paddle.prod(input)
|
||||
expected_result = np.prod(self.input)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=1)
|
||||
expected_result = np.prod(self.input, axis=1)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=-1)
|
||||
expected_result = np.prod(self.input, axis=-1)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=[0, 1])
|
||||
expected_result = np.prod(self.input, axis=(0, 1))
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=1, keepdim=True)
|
||||
expected_result = np.prod(self.input, axis=1, keepdims=True)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=1, dtype='int64')
|
||||
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
dy_result = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
|
||||
expected_result = np.prod(
|
||||
self.input, axis=1, keepdims=True, dtype=np.int64)
|
||||
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
|
||||
|
||||
def run_static(self, use_gpu=False):
|
||||
input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32')
|
||||
result0 = paddle.prod(input)
|
||||
result1 = paddle.prod(input, axis=1)
|
||||
result2 = paddle.prod(input, axis=-1)
|
||||
result3 = paddle.prod(input, axis=[0, 1])
|
||||
result4 = paddle.prod(input, axis=1, keepdim=True)
|
||||
result5 = paddle.prod(input, axis=1, dtype='int64')
|
||||
result6 = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
|
||||
|
||||
place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace()
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(paddle.static.default_startup_program())
|
||||
static_result = exe.run(feed={"input": self.input},
|
||||
fetch_list=[
|
||||
result0, result1, result2, result3, result4,
|
||||
result5, result6
|
||||
])
|
||||
|
||||
expected_result = np.prod(self.input)
|
||||
self.assertTrue(np.allclose(static_result[0], expected_result))
|
||||
expected_result = np.prod(self.input, axis=1)
|
||||
self.assertTrue(np.allclose(static_result[1], expected_result))
|
||||
expected_result = np.prod(self.input, axis=-1)
|
||||
self.assertTrue(np.allclose(static_result[2], expected_result))
|
||||
expected_result = np.prod(self.input, axis=(0, 1))
|
||||
self.assertTrue(np.allclose(static_result[3], expected_result))
|
||||
expected_result = np.prod(self.input, axis=1, keepdims=True)
|
||||
self.assertTrue(np.allclose(static_result[4], expected_result))
|
||||
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
|
||||
self.assertTrue(np.allclose(static_result[5], expected_result))
|
||||
expected_result = np.prod(
|
||||
self.input, axis=1, keepdims=True, dtype=np.int64)
|
||||
self.assertTrue(np.allclose(static_result[6], expected_result))
|
||||
|
||||
def test_cpu(self):
|
||||
paddle.disable_static(place=paddle.CPUPlace())
|
||||
self.run_imperative()
|
||||
paddle.enable_static()
|
||||
|
||||
with paddle.static.program_guard(paddle.static.Program()):
|
||||
self.run_static()
|
||||
|
||||
def test_gpu(self):
|
||||
if not paddle.fluid.core.is_compiled_with_cuda():
|
||||
return
|
||||
|
||||
paddle.disable_static(place=paddle.CUDAPlace(0))
|
||||
self.run_imperative()
|
||||
paddle.enable_static()
|
||||
|
||||
with paddle.static.program_guard(paddle.static.Program()):
|
||||
self.run_static(use_gpu=True)
|
||||
|
||||
|
||||
class TestProdOpError(unittest.TestCase):
|
||||
def test_error(self):
|
||||
with paddle.static.program_guard(paddle.static.Program(),
|
||||
paddle.static.Program()):
|
||||
x = paddle.data(name='x', shape=[2, 2, 4], dtype='float32')
|
||||
bool_x = paddle.data(name='bool_x', shape=[2, 2, 4], dtype='bool')
|
||||
# The argument x shoule be a Tensor
|
||||
self.assertRaises(TypeError, paddle.prod, [1])
|
||||
|
||||
# The data type of x should be float32, float64, int32, int64
|
||||
self.assertRaises(TypeError, paddle.prod, bool_x)
|
||||
|
||||
# The argument axis's type shoule be int ,list or tuple
|
||||
self.assertRaises(TypeError, paddle.prod, x, 1.5)
|
||||
|
||||
# The argument dtype of prod_op should be float32, float64, int32 or int64.
|
||||
self.assertRaises(TypeError, paddle.prod, x, 'bool')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue