Add DecoupledWeightDecay (#16427)
* Add DecoupledWeightDecayrevert-16555-model_data_cryption_link_all_lib
parent
ea6e565b84
commit
bb80dae7d0
@ -0,0 +1,20 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
from . import extend_optimizer_with_weight_decay
|
||||
from .extend_optimizer_with_weight_decay import *
|
||||
|
||||
__all__ = []
|
||||
__all__ += extend_optimizer_with_weight_decay.__all__
|
@ -0,0 +1,152 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import paddle.fluid
|
||||
from paddle.fluid import framework as framework
|
||||
|
||||
__all__ = ["extend_with_decoupled_weight_decay"]
|
||||
|
||||
|
||||
class DecoupledWeightDecay(object):
|
||||
def __init__(self, coeff=0.0, apply_decay_param_fun=None, **kwargs):
|
||||
if not isinstance(coeff, float) and \
|
||||
not isinstance(coeff, framework.Variable):
|
||||
raise TypeError("coeff should be float or Variable.")
|
||||
self._params_name = set()
|
||||
self._apply_decay_param_fun = apply_decay_param_fun
|
||||
self._coeff = coeff
|
||||
super(DecoupledWeightDecay, self).__init__(**kwargs)
|
||||
|
||||
def _scale_parameters(self, params_and_grads):
|
||||
"""
|
||||
Adds weight decay ops.
|
||||
scaled_parameter = parameter * coeff
|
||||
|
||||
Args:
|
||||
params_and_grads: A list of (parameters, gradients) pairs,
|
||||
the parameters need to decay.
|
||||
Raises:
|
||||
Exception: The type of coeff and parameter is not consistent.
|
||||
"""
|
||||
if isinstance(self._coeff, float) and self._coeff == 0.0:
|
||||
return
|
||||
|
||||
scaled_params = []
|
||||
for param, grad in params_and_grads:
|
||||
# If no gradient then we don't need to do anything
|
||||
if grad is None:
|
||||
continue
|
||||
if self._apply_decay_param_fun is not None \
|
||||
and not self._apply_decay_param_fun(param.name):
|
||||
continue
|
||||
|
||||
if isinstance(self._coeff, float):
|
||||
assert param.dtype is not paddle.fluid.core.VarDesc.VarType.FP32, \
|
||||
"the type of coeff(float) and parameter(%s) is not consistent."%(self._coeff.dtype)
|
||||
else:
|
||||
assert self._coeff.dtype == param.dtype, \
|
||||
"the type of coeff(%s) and parameter(%s) is not consistent."%(self._coeff.dtype, param.dtype)
|
||||
|
||||
with param.block.program._optimized_guard(
|
||||
[param, grad]), framework.name_scope('weight decay'):
|
||||
assert param.name not in self._params_name
|
||||
scaled_params.append((param, grad, param * self._coeff))
|
||||
self._params_name.add(param.name)
|
||||
return scaled_params
|
||||
|
||||
def backward(self, **kargs):
|
||||
return super(DecoupledWeightDecay, self).backward(**kargs)
|
||||
|
||||
def apply_optimize(self, **kargs):
|
||||
return super(DecoupledWeightDecay, self).apply_optimize(**kargs)
|
||||
|
||||
def minimize(self,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
params_grads = self.backward(
|
||||
loss=loss,
|
||||
startup_program=startup_program,
|
||||
parameter_list=parameter_list,
|
||||
no_grad_set=no_grad_set)
|
||||
scaled_params = self._scale_parameters(params_grads)
|
||||
for p_grad_sgrad in scaled_params:
|
||||
param, grad, scaled_param = p_grad_sgrad
|
||||
with param.block.program._optimized_guard(
|
||||
[param, grad]), framework.name_scope('weight decay'):
|
||||
updated_param = paddle.fluid.layers.elementwise_sub(
|
||||
x=param, y=scaled_param)
|
||||
paddle.fluid.layers.assign(input=updated_param, output=param)
|
||||
|
||||
optimize_ops = self.apply_optimize(
|
||||
loss=loss,
|
||||
params_grads=params_grads,
|
||||
startup_program=startup_program)
|
||||
return optimize_ops, params_grads
|
||||
|
||||
def __str__(self):
|
||||
return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
|
||||
|
||||
|
||||
def extend_with_decoupled_weight_decay(base_optimizer):
|
||||
"""
|
||||
extend_with_decoupled_weight_decay is a decorator function, it returns an
|
||||
optimizer class with decoupled weight decay. The returned optimizer will
|
||||
apply weight decay on the optimized parameters with the parameters before
|
||||
optimization, i.e: new_parameter = optimized_parameter - parameter * coeff.
|
||||
The details of decoupled weight decay yplease refer to this
|
||||
`DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
|
||||
|
||||
Args:
|
||||
base_optimizer (Optimizer): The base_optimizer should be a derived class of Optimizer.
|
||||
|
||||
Returns:
|
||||
OptimizerWithDecoupledWeightDecay: the optimizer with decouple weight decay.
|
||||
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
|
||||
fluid.optimizer.Adam)
|
||||
optimizer = AdamW(learning_rate=0.1,
|
||||
weight_decay=0.01)
|
||||
|
||||
optimizer.minimize(cost)
|
||||
"""
|
||||
if not issubclass(base_optimizer, paddle.fluid.optimizer.Optimizer):
|
||||
raise TypeError(
|
||||
"The input(base_optimizer) should be a derived class of Optimizer.")
|
||||
|
||||
class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecay,
|
||||
base_optimizer):
|
||||
"""
|
||||
OptimizerWithDecoupledWeightDecay is used to update the optimized parameters
|
||||
with the parameters before optimization. For more information, please refer:
|
||||
https://arxiv.org/pdf/1711.05101.pdf.
|
||||
|
||||
Args:
|
||||
weight_decay (float|Variable): The weight decay coefficient, it can be
|
||||
float or Variable.
|
||||
apply_decay_param_fun (function|None): If it is not None,
|
||||
only variables that makes apply_decay_param_fun(variable)==True
|
||||
will be updated. It only works when we want to specify variables.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self, weight_decay, apply_decay_param_fun=None, **kwargs):
|
||||
super(OptimizerWithDecoupledWeightDecay, self).__init__(
|
||||
weight_decay, apply_decay_param_fun, **kwargs)
|
||||
|
||||
return OptimizerWithDecoupledWeightDecay
|
@ -0,0 +1,151 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from functools import partial
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import contextlib
|
||||
|
||||
|
||||
def get_places():
|
||||
places = [fluid.CPUPlace()]
|
||||
if fluid.core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
return places
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def prog_scope_guard(main_prog, startup_prog):
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(main_prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
def bow_net(data,
|
||||
label,
|
||||
dict_dim,
|
||||
is_sparse=False,
|
||||
emb_dim=128,
|
||||
hid_dim=128,
|
||||
hid_dim2=96,
|
||||
class_dim=2):
|
||||
"""
|
||||
BOW net
|
||||
This model is from https://github.com/PaddlePaddle/models:
|
||||
fluid/PaddleNLP/text_classification/nets.py
|
||||
"""
|
||||
emb = fluid.layers.embedding(
|
||||
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
|
||||
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
||||
bow_tanh = fluid.layers.tanh(bow)
|
||||
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
||||
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
||||
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestWeightDecay(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.word_dict = paddle.dataset.imdb.word_dict()
|
||||
reader = paddle.batch(
|
||||
paddle.dataset.imdb.train(self.word_dict), batch_size=2)()
|
||||
self.train_data = [next(reader) for _ in range(5)]
|
||||
self.learning_rate = .5
|
||||
|
||||
def run_program(self, place, feed_list):
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
main_prog = fluid.default_main_program()
|
||||
param_list = [var.name for var in main_prog.block(0).all_parameters()]
|
||||
|
||||
param_sum = []
|
||||
for data in self.train_data:
|
||||
out = exe.run(main_prog,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=param_list)
|
||||
p_sum = 0
|
||||
for v in out:
|
||||
p_sum += np.sum(np.abs(v))
|
||||
param_sum.append(p_sum)
|
||||
return param_sum
|
||||
|
||||
def check_weight_decay(self, place, model):
|
||||
main_prog = fluid.framework.Program()
|
||||
startup_prog = fluid.framework.Program()
|
||||
startup_prog.random_seed = 1
|
||||
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
avg_cost = model(data, label, len(self.word_dict))
|
||||
AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
|
||||
fluid.optimizer.Adam)
|
||||
|
||||
optimizer = AdamW(
|
||||
learning_rate=self.learning_rate,
|
||||
weight_decay=self.learning_rate)
|
||||
|
||||
optimizer.minimize(avg_cost)
|
||||
param_sum = self.run_program(place, [data, label])
|
||||
|
||||
return param_sum
|
||||
|
||||
def check_weight_decay2(self, place, model):
|
||||
main_prog = fluid.framework.Program()
|
||||
startup_prog = fluid.framework.Program()
|
||||
startup_prog.random_seed = 1
|
||||
with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
|
||||
avg_cost = model(data, label, len(self.word_dict))
|
||||
|
||||
param_list = [(var, var * self.learning_rate)
|
||||
for var in main_prog.block(0).all_parameters()]
|
||||
|
||||
optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)
|
||||
|
||||
optimizer.minimize(avg_cost)
|
||||
for params in param_list:
|
||||
updated_p = fluid.layers.elementwise_sub(
|
||||
x=params[0], y=params[1])
|
||||
fluid.layers.assign(input=updated_p, output=params[0])
|
||||
|
||||
param_sum = self.run_program(place, [data, label])
|
||||
return param_sum
|
||||
|
||||
def test_weight_decay(self):
|
||||
for place in get_places():
|
||||
model = partial(bow_net, is_sparse=False)
|
||||
param_sum1 = self.check_weight_decay(place, model)
|
||||
param_sum2 = self.check_weight_decay2(place, model)
|
||||
|
||||
for i in range(len(param_sum1)):
|
||||
assert np.isclose(a=param_sum1[i], b=param_sum2[i], rtol=5e-5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue