[PaddleSlim] refine slim reader to support dataloader (#20604)
parent
a4753f3a79
commit
bc4af386f4
@ -0,0 +1,126 @@
|
||||
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license");
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import paddle
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
from mobilenet import MobileNet
|
||||
from paddle.fluid.contrib.slim.core import Compressor
|
||||
from paddle.fluid.contrib.slim.graph import GraphWrapper
|
||||
|
||||
|
||||
class TestReader(unittest.TestCase):
|
||||
"""
|
||||
Test API of quantization strategy.
|
||||
"""
|
||||
|
||||
def set_train_reader(self, image, label, place):
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.mnist.train(), batch_size=128)
|
||||
return train_reader
|
||||
|
||||
def set_val_reader(self, image, label, place):
|
||||
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
|
||||
return val_reader
|
||||
|
||||
def set_feed_list(self, image, label):
|
||||
return [('img', image.name), ('label', label.name)]
|
||||
|
||||
def quan(self, config_file):
|
||||
if os.path.exists('./checkpoints_quan'):
|
||||
shutil.rmtree('./checkpoints_quan')
|
||||
|
||||
if not fluid.core.is_compiled_with_cuda():
|
||||
return
|
||||
class_dim = 10
|
||||
image_shape = [1, 28, 28]
|
||||
|
||||
train_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
val_program = fluid.Program()
|
||||
|
||||
with fluid.program_guard(train_program, startup_program):
|
||||
with fluid.unique_name.guard():
|
||||
image = fluid.layers.data(
|
||||
name='image', shape=image_shape, dtype='float32')
|
||||
image.stop_gradient = False
|
||||
label = fluid.layers.data(
|
||||
name='label', shape=[1], dtype='int64')
|
||||
out = MobileNet(name='quan').net(input=image,
|
||||
class_dim=class_dim)
|
||||
print("out: {}".format(out.name))
|
||||
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
|
||||
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
|
||||
cost = fluid.layers.cross_entropy(input=out, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
optimizer = fluid.optimizer.Momentum(
|
||||
momentum=0.9,
|
||||
learning_rate=0.01,
|
||||
regularization=fluid.regularizer.L2Decay(4e-5))
|
||||
|
||||
val_program = train_program.clone(for_test=False)
|
||||
|
||||
place = fluid.CUDAPlace(0)
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(startup_program)
|
||||
|
||||
val_reader = self.set_val_reader(image, label, place)
|
||||
|
||||
val_feed_list = self.set_feed_list(image, label)
|
||||
val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5',
|
||||
acc_top5.name)]
|
||||
|
||||
train_reader = self.set_train_reader(image, label, place)
|
||||
train_feed_list = self.set_feed_list(image, label)
|
||||
train_fetch_list = [('loss', avg_cost.name)]
|
||||
|
||||
com_pass = Compressor(
|
||||
place,
|
||||
fluid.global_scope(),
|
||||
train_program,
|
||||
train_reader=train_reader,
|
||||
train_feed_list=train_feed_list,
|
||||
train_fetch_list=train_fetch_list,
|
||||
eval_program=val_program,
|
||||
eval_reader=val_reader,
|
||||
eval_feed_list=val_feed_list,
|
||||
eval_fetch_list=val_fetch_list,
|
||||
train_optimizer=optimizer)
|
||||
com_pass.config(config_file)
|
||||
eval_graph = com_pass.run()
|
||||
|
||||
|
||||
class TestReader1(TestReader):
|
||||
def set_train_reader(self, image, label, place):
|
||||
loader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=[image, label], capacity=16, iterable=True)
|
||||
loader.set_sample_generator(
|
||||
paddle.dataset.mnist.train(), batch_size=128, places=place)
|
||||
return loader
|
||||
|
||||
def set_val_reader(self, image, label, place):
|
||||
loader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=[image, label], capacity=16, iterable=True)
|
||||
loader.set_sample_generator(
|
||||
paddle.dataset.mnist.test(), batch_size=128, places=place)
|
||||
return loader
|
||||
|
||||
def test_compression(self):
|
||||
self.quan("./quantization/compress_1.yaml")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue