|
|
|
|
@ -21,14 +21,14 @@ from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, V
|
|
|
|
|
from ..fluid.layers.layer_function_generator import templatedoc
|
|
|
|
|
from ..fluid.layer_helper import LayerHelper
|
|
|
|
|
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
|
|
|
|
|
from ..fluid.layers import utils, uniform_random, gaussian_random
|
|
|
|
|
from ..fluid.layers import utils, gaussian_random
|
|
|
|
|
from ..fluid.layers.tensor import fill_constant
|
|
|
|
|
|
|
|
|
|
from ..fluid.io import shuffle #DEFINE_ALIAS
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
|
# 'gaussin',
|
|
|
|
|
# 'uniform',
|
|
|
|
|
'uniform',
|
|
|
|
|
'shuffle',
|
|
|
|
|
'randn',
|
|
|
|
|
'rand',
|
|
|
|
|
@ -37,6 +37,111 @@ __all__ = [
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
|
|
|
|
|
"""
|
|
|
|
|
This OP returns a Tensor filled with random values sampled from a uniform
|
|
|
|
|
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
::
|
|
|
|
|
|
|
|
|
|
Input:
|
|
|
|
|
shape = [1, 2]
|
|
|
|
|
|
|
|
|
|
Output:
|
|
|
|
|
result=[[0.8505902, 0.8397286]]
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
|
|
|
|
|
is a list or tuple, the elements of it should be integers or Tensors
|
|
|
|
|
(with the shape [1], and the data type int32 or int64). If ``shape``
|
|
|
|
|
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
|
|
|
|
|
int64).
|
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
|
|
|
|
|
the output Tensor. Supported data types: float32, float64.
|
|
|
|
|
Default is float32.
|
|
|
|
|
min(float|int, optional): The lower bound on the range of random values
|
|
|
|
|
to generate, ``min`` is included in the range. Default is -1.0.
|
|
|
|
|
max(float|int, optional): The upper bound on the range of random values
|
|
|
|
|
to generate, ``max`` is excluded in the range. Default is 1.0.
|
|
|
|
|
seed(int, optional): Random seed used for generating samples. 0 means
|
|
|
|
|
use a seed generated by the system. Note that if seed is not 0,
|
|
|
|
|
this operator will always generate the same random numbers every
|
|
|
|
|
time. Default is 0.
|
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor: A Tensor filled with random values sampled from a uniform
|
|
|
|
|
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
TypeError: If ``shape`` is not list, tuple, Tensor.
|
|
|
|
|
TypeError: If ``dtype`` is not float32, float64.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# example 1:
|
|
|
|
|
# attr shape is a list which doesn't contain Tensor.
|
|
|
|
|
result_1 = paddle.tensor.random.uniform(shape=[3, 4])
|
|
|
|
|
# [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357],
|
|
|
|
|
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
|
|
|
|
|
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]]
|
|
|
|
|
|
|
|
|
|
# example 2:
|
|
|
|
|
# attr shape is a list which contains Tensor.
|
|
|
|
|
dim_1 = paddle.fill_constant([1], "int64", 2)
|
|
|
|
|
dim_2 = paddle.fill_constant([1], "int32", 3)
|
|
|
|
|
result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
|
|
|
|
|
# [[-0.9951253, 0.30757582, 0.9899647 ],
|
|
|
|
|
# [ 0.5864527, 0.6607096, -0.8886161 ]]
|
|
|
|
|
|
|
|
|
|
# example 3:
|
|
|
|
|
# attr shape is a Tensor, the data type must be int64 or int32.
|
|
|
|
|
shape = np.array([2, 3])
|
|
|
|
|
shape_tensor = paddle.to_tensor(shape)
|
|
|
|
|
|
|
|
|
|
result_3 = paddle.tensor.random.uniform(shape_tensor)
|
|
|
|
|
# if shape_tensor's value is [2, 3]
|
|
|
|
|
# result_3 is:
|
|
|
|
|
# [[-0.8517412, -0.4006908, 0.2551912 ],
|
|
|
|
|
# [ 0.3364414, 0.36278176, -0.16085452]]
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
|
|
if in_dygraph_mode():
|
|
|
|
|
shape = utils._convert_shape_to_list(shape)
|
|
|
|
|
return core.ops.uniform_random('shape', shape, 'min',
|
|
|
|
|
float(min), 'max',
|
|
|
|
|
float(max), 'seed', seed, 'dtype', dtype)
|
|
|
|
|
|
|
|
|
|
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
|
|
|
|
|
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')
|
|
|
|
|
|
|
|
|
|
inputs = dict()
|
|
|
|
|
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
|
|
|
|
|
utils._get_shape_tensor_inputs(
|
|
|
|
|
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')
|
|
|
|
|
|
|
|
|
|
helper = LayerHelper("uniform_random", **locals())
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
|
helper.append_op(
|
|
|
|
|
type="uniform_random", inputs=inputs, attrs=attrs,
|
|
|
|
|
outputs={"Out": out})
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
|
|
|
|
|
"""
|
|
|
|
|
:alias_main: paddle.randint
|
|
|
|
|
@ -352,6 +457,6 @@ def rand(shape, dtype=None, name=None):
|
|
|
|
|
if dtype is None:
|
|
|
|
|
dtype = 'float32'
|
|
|
|
|
|
|
|
|
|
out = uniform_random(shape, dtype, min=0.0, max=1.0, name=name)
|
|
|
|
|
out = uniform(shape, dtype, min=0.0, max=1.0, name=name)
|
|
|
|
|
out.stop_gradient = True
|
|
|
|
|
return out
|
|
|
|
|
|