Add anakin conv2d/relu/sigmoid/tanh converter (#15997)
* add activation op * test conv2d relu sigmoid tanhmove-code
parent
d0ce6a9044
commit
be523baad2
@ -1,2 +1,4 @@
|
||||
cc_library(anakin_op_converter SRCS fc.cc registrar.cc DEPS anakin_engine framework_proto scope)
|
||||
cc_library(anakin_op_converter SRCS fc.cc conv2d.cc activation.cc DEPS anakin_engine framework_proto scope operator op_registry)
|
||||
cc_test(test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op)
|
||||
cc_test(test_anakin_conv2d SRCS test_conv2d_op.cc DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} anakin_op_converter conv_op im2col vol2col depthwise_conv SERIAL)
|
||||
cc_test(test_anakin_activation SRCS test_activation_op.cc DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} activation_op anakin_op_converter SERIAL)
|
||||
|
@ -0,0 +1,59 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/inference/anakin/convert/activation.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
|
||||
using anakin::graph::GraphGlobalMem;
|
||||
using anakin::AK_FLOAT;
|
||||
using anakin::saber::NV;
|
||||
using anakin::saber::Shape;
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace anakin {
|
||||
|
||||
ActivationOpConverter::ActivationOpConverter(const std::string &op_type)
|
||||
: op_type_(op_type) {
|
||||
auto it = anakin_ops_type_.find(op_type_);
|
||||
PADDLE_ENFORCE(it != anakin_ops_type_.end(),
|
||||
"activation op type is not support");
|
||||
anakin_op_type_ = it->second;
|
||||
}
|
||||
|
||||
void ActivationOpConverter::operator()(const framework::proto::OpDesc &op,
|
||||
const framework::Scope &scope,
|
||||
bool test_mode) {
|
||||
framework::OpDesc op_desc(op, nullptr);
|
||||
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
|
||||
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
|
||||
|
||||
auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();
|
||||
auto input_name = op_desc.Input("X").front();
|
||||
auto output_name = op_desc.Output("Out").front();
|
||||
engine_->AddOp(op_name, "Activation", {input_name}, {output_name});
|
||||
engine_->AddOpAttr(op_name, "type", anakin_op_type_);
|
||||
if (op_type_ == "relu") {
|
||||
engine_->AddOpAttr(op_name, "alpha", 0);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace anakin
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_ANAKIN_OP_CONVERTER(relu, ReluOpConverter);
|
||||
REGISTER_ANAKIN_OP_CONVERTER(sigmoid, SigmoidOpConverter);
|
||||
REGISTER_ANAKIN_OP_CONVERTER(tanh, TanhOpConverter);
|
@ -0,0 +1,87 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/inference/anakin/convert/conv2d.h"
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
using anakin::graph::GraphGlobalMem;
|
||||
using anakin::AK_FLOAT;
|
||||
using anakin::saber::NV;
|
||||
using anakin::saber::Shape;
|
||||
using anakin::PTuple;
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace anakin {
|
||||
|
||||
void Conv2dOpConverter::operator()(const framework::proto::OpDesc &op,
|
||||
const framework::Scope &scope,
|
||||
bool test_mode) {
|
||||
framework::OpDesc op_desc(op, nullptr);
|
||||
PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL);
|
||||
PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL);
|
||||
PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL);
|
||||
|
||||
auto input_name = op_desc.Input("Input").front();
|
||||
auto output_name = op_desc.Output("Output").front();
|
||||
auto op_name = op_desc.Type() + ":" + op_desc.Output("Output").front();
|
||||
engine_->AddOp(op_name, "Convolution", {input_name}, {output_name});
|
||||
|
||||
auto *filter_v = scope.FindVar(op_desc.Input("Filter").front());
|
||||
PADDLE_ENFORCE_NOT_NULL(filter_v);
|
||||
auto *filter_t = filter_v->GetMutable<framework::LoDTensor>();
|
||||
std::unique_ptr<framework::LoDTensor> weight_tensor(
|
||||
new framework::LoDTensor());
|
||||
weight_tensor->Resize(filter_t->dims());
|
||||
TensorCopySync((*filter_t), platform::CPUPlace(), weight_tensor.get());
|
||||
|
||||
auto *weight_data = weight_tensor->mutable_data<float>(platform::CPUPlace());
|
||||
PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL);
|
||||
|
||||
// const int n_output = weight_tensor->dims()[0];
|
||||
const int n_input = weight_tensor->dims()[1];
|
||||
const int filter_h = weight_tensor->dims()[2];
|
||||
const int filter_w = weight_tensor->dims()[3];
|
||||
auto filter_num = n_input * filter_h * filter_w;
|
||||
engine_->AddOpAttr<int>(op_name, "filter_num", filter_num);
|
||||
engine_->AddOpAttr<PTuple<int>>(op_name, "kernel_size", {filter_h, filter_w});
|
||||
auto strides = boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
|
||||
engine_->AddOpAttr<PTuple<int>>(op_name, "strides", strides);
|
||||
auto paddings = boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
|
||||
engine_->AddOpAttr<PTuple<int>>(op_name, "padding", paddings);
|
||||
auto dilations = boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
|
||||
engine_->AddOpAttr<PTuple<int>>(op_name, "dilation_rate", dilations);
|
||||
const int groups = boost::get<int>(op_desc.GetAttr("groups"));
|
||||
engine_->AddOpAttr(op_name, "group", groups);
|
||||
engine_->AddOpAttr(op_name, "axis", 1);
|
||||
engine_->AddOpAttr(op_name, "bias_term", false);
|
||||
|
||||
auto weight_shape = framework::vectorize2int(filter_t->dims());
|
||||
Shape anakin_shape(weight_shape);
|
||||
auto *weight1 =
|
||||
GraphGlobalMem<NV>::Global().template new_block<AK_FLOAT>(anakin_shape);
|
||||
float *cpu_data = static_cast<float *>(weight1->h_tensor().mutable_data());
|
||||
std::copy_n(weight_tensor->data<float>(), weight_tensor->numel(), cpu_data);
|
||||
weight1->d_tensor().set_shape(anakin_shape);
|
||||
weight1->d_tensor().copy_from(weight1->h_tensor());
|
||||
engine_->AddOpAttr(op_name, "weight_1", *weight1);
|
||||
}
|
||||
|
||||
} // namespace anakin
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_ANAKIN_OP_CONVERTER(conv2d, Conv2dOpConverter);
|
@ -0,0 +1,56 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/fluid/inference/anakin/convert/activation.h"
|
||||
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
|
||||
#include "paddle/fluid/inference/anakin/convert/ut_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace anakin {
|
||||
|
||||
static void test_activation_op(const std::string &op_type) {
|
||||
auto *converter = Registry<AnakinOpConverter>::Global().Lookup(op_type);
|
||||
PADDLE_ENFORCE(converter != nullptr);
|
||||
std::unordered_set<std::string> parameters;
|
||||
framework::Scope scope;
|
||||
AnakinConvertValidation validator(parameters, scope);
|
||||
validator.DeclInputVar("act-X", {10, 6, 1, 1});
|
||||
validator.DeclOutputVar("act-Out", {10, 6, 1, 1});
|
||||
framework::OpDesc desc;
|
||||
desc.SetType(op_type);
|
||||
desc.SetInput("X", {"act-X"});
|
||||
desc.SetOutput("Out", {"act-Out"});
|
||||
|
||||
LOG(INFO) << "set OP";
|
||||
validator.SetOp(*desc.Proto());
|
||||
LOG(INFO) << "execute";
|
||||
|
||||
validator.Execute(5);
|
||||
}
|
||||
|
||||
TEST(relu_op, test) { test_activation_op("relu"); }
|
||||
TEST(sigm_op, test) { test_activation_op("sigmoid"); }
|
||||
TEST(tanh_op, test) { test_activation_op("tanh"); }
|
||||
} // namespace anakin
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
USE_OP(relu);
|
||||
USE_OP(sigmoid);
|
||||
USE_OP(tanh);
|
||||
USE_ANAKIN_CONVERTER(relu);
|
||||
USE_ANAKIN_CONVERTER(sigmoid);
|
||||
USE_ANAKIN_CONVERTER(tanh);
|
@ -0,0 +1,62 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/fluid/inference/anakin/convert/conv2d.h"
|
||||
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
|
||||
#include "paddle/fluid/inference/anakin/convert/ut_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace anakin {
|
||||
|
||||
TEST(conv2d_op, test) {
|
||||
auto* conv2d_converter =
|
||||
Registry<AnakinOpConverter>::Global().Lookup("conv2d");
|
||||
ASSERT_TRUE(conv2d_converter != nullptr);
|
||||
std::unordered_set<std::string> parameters({"conv2d-Y"});
|
||||
framework::Scope scope;
|
||||
AnakinConvertValidation validator(parameters, scope);
|
||||
validator.DeclInputVar("conv2d-X", {1, 2, 5, 5});
|
||||
validator.DeclParamVar("conv2d-Y", {3, 2, 3, 3});
|
||||
validator.DeclOutputVar("conv2d-Out", {1, 3, 5, 5});
|
||||
|
||||
// Prepare Op description
|
||||
framework::OpDesc desc;
|
||||
desc.SetType("conv2d");
|
||||
desc.SetInput("Input", {"conv2d-X"});
|
||||
desc.SetInput("Filter", {"conv2d-Y"});
|
||||
desc.SetOutput("Output", {"conv2d-Out"});
|
||||
|
||||
const std::vector<int> strides({1, 1});
|
||||
const std::vector<int> paddings({1, 1});
|
||||
const std::vector<int> dilations({1, 1});
|
||||
const int groups = 1;
|
||||
|
||||
desc.SetAttr("strides", strides);
|
||||
desc.SetAttr("paddings", paddings);
|
||||
desc.SetAttr("dilations", dilations);
|
||||
desc.SetAttr("groups", groups);
|
||||
|
||||
validator.SetOp(*desc.Proto());
|
||||
|
||||
validator.Execute(3);
|
||||
}
|
||||
|
||||
} // namespace anakin
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
USE_OP(conv2d);
|
||||
USE_ANAKIN_CONVERTER(conv2d);
|
Loading…
Reference in new issue